Barry-Wehmiller Design Group

INDUS RIAL POWER

Planning for Today & Tomorrow

NWCCC June 13, 2023

Introduction

ERIC LAMPE Director

- Joined Design Group in February 2016
- Licensed electrical engineer in 11 states (excluding Washington)
- Previous employments: Upstream Oil & Gas, defense contractor
- US Army veteran

DELIVERING THE FUTURE OF MANUFACTURING + TECHNOLOGY

We are the **only** professional services firm born from a manufacturing technology company to become an **independent** and fully **integrated** consulting, design, systems integration, and construction management firm for **food**, **beverage**, **industrial**, and **science & technology** clients shaping our 21st-century economy.

45+ 1600+ \$600m Offices Professionals Revenue

#60 Top 100 Design-Build Firms , **#90** Top 500 Design Firms, **#2** in Food & Beverage, **#3** in Semiconductor, **#10** in Industrial Process, **#12** in Chemical Plants, **#13** in Oil & Gas

System Integrator

DESIGN GROUP

H

Introduction

Overview

Energy Reduction Options

Decarbonization of Building Systems

Energy Efficiency Building Codes

Standby Power Options

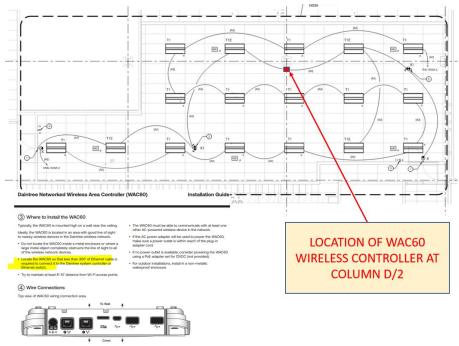
Challenges, Planning, & Utility Coordination

OVERVIEW

Large Power Facilities

- Primary Metering: receive power at Medium or High Voltage
- Redundant utility feeds
- Significant standby power systems
- Redundant power distribution systems
- HRG or LRG transformer secondaries
- On-site WWT, bulk gas yards, energy storage, steam or water turbines
- Networked power monitoring systems, some with energy management

Energy Reduction Options


Lighting Control Systems

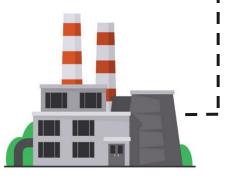
- As simple as single line-voltage devices
- As complex as networked building controls
- Automatic lighting controls are mandated by most energy codes
- Reduction in electrical energy usage may only be 0.01% or less
- Incentives and rebates may be available from your utility, municipality, or national EE organizations
- Wireless controls are improving and expanding

Project Example

Simple redesign of lab clean room space including wireless lighting control system to connect to existing network

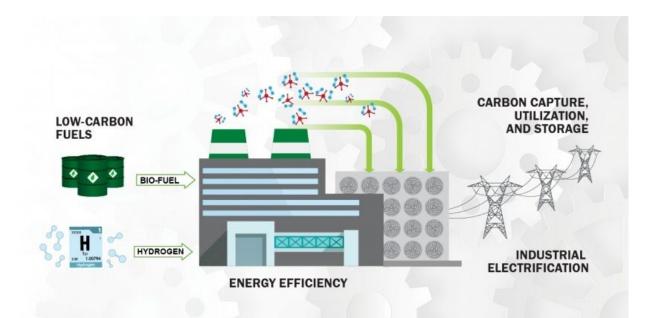
- Project Scope:
 - Battery-powered Occupancy Sensors
 - Amber LEDs for photosensitive work
 - Single POE Wireless controller for entire space
 - Ethernet connection to existing network control panel
 - Detailed Design and Construction Administration services

Client Profile:


Advanced Tech market facility

Photovoltaic (PV) Arrays

- Large PV systems make more sense, better \$/W cost
- Without the grants/incentives, PV installation becomes costly.
- Requirements to consider:
 - Geographic
 - Space. Roof or Ground mounted
 - Structural. Existing or new roof. Most racking system are weighted.
 - Architectural. Roofing material, life on existing roof, and warranty timeline.
 - Shading over PV panels.
 - Electrical connection to the distribution panels.
 - Selection of PV system, grid-tie, grid-tie with battery back up
 - Communication and monitoring systems.
 - Maintenance of the system


Energy Management Systems

- What are they for?
- Critical for facilities with distributed energy resources
- Identify and correct actual and potential problems: nonconformities, corrective and preventive action.
- May be used for EV charging stations, each one could be rated up to 10kW.
 - If you have 20-30 charging stations, demand gets heavy and requires a larger service
 - EMS can keep that demand to within a set amperage.
 - Some are built directly into the EV station and can self regulate if you have two cars charging at once.
- Consultants must design for the worst case, unless controls are included to reduce demand.

Decarbonization of Building Systems

What's happening?

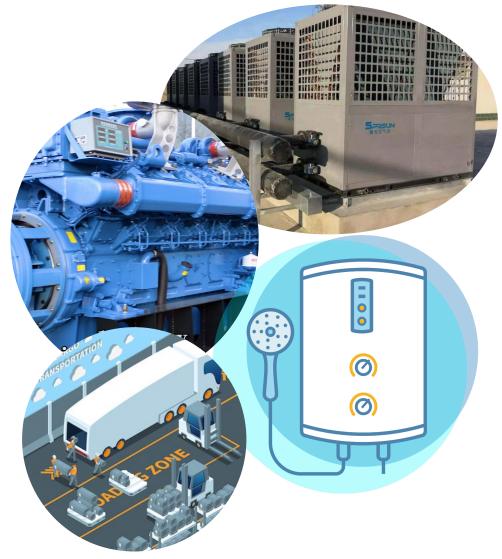

- Electricity currently represents ~11% of total industrial energy consumption
- What is "decarbonization"?
- How do you transition away?
- Drivers: Some are building code changes, others are efficiency credits (LEED, Net Zero)

Image courtesy of Energy.gov

Common Industrial Equipment

- Diesel Generators
- Heat pumps in HVAC
- Water Heaters
- Air Handling equipment using electric heat
- Fleet vehicles will transition to EV
- What are other states doing?

Refrigerants

- Low GWP refrigerant is a form of refrigerant that has a low global warming potential (GWP)
- R-410A for chillers and other equipment will be replaced with alternatives that have "low" flammability characteristics
- Flammable refrigerants required safety standards be updated to allow for their use in equipment and buildings: leak detection & mitigation.
- Energy required for air conditioning is likely to triple by 2050

Energy Efficiency Building Codes

International Energy Conservation Code (IECC)

- Most recent release is 2021
 - Montana adopted 2021.
 - Washington State Energy Code based on 2018.
 - Idaho adopted 2018.
- Massachusetts amendment to C402.3 requires a solar ready zone for commercial roofs

	New Commercial Buildings		
Total Number of Parking Spaces	Minimum number of Spaces with EVSE Installed ^{a.}	Minimum Number of EV- Ready Spaces	Minimum Number of EV- Capable Spaces
<u>1</u>	<u>1</u>	<u>1</u>	<u>-</u>
<u>2 – 10</u>	<u>1</u>	<u>2</u>	=
<u> 11 – 15</u>	<u>1</u>	<u>2</u>	<u>1</u>
<u> 16 – 19</u>	<u>1</u>	<u>2</u>	<u>2</u>
<u> 21 – 25</u>	<u>2</u>	<u>3</u>	<u>2</u>
<u> 26+</u>	5% of total parking spaces	10% of total parking spaces	10% of total parking spaces

• Where parking is provided, new construction shall provide Electrical Vehicle Supply Equipment (EVSE) installed spaces and facilitate future installation and use of EV-Capable Spaces.

ASHRAE 90.1

- Most recent release was 2022 though not many states have adopted it
 - Oregon based on 2019
- Electric motors for fire pumps have a minimum efficiency
- New buildings require energy monitoring, recording, and reporting

10.4.6 Whole-Building Energy Monitoring

Measurement devices shall be installed at the *building* site to monitor the *energy* use of each new *building*.

10.4.6.1 Monitoring

Measurement devices shall be installed to monitor the *building* use of the following types of *energy* supplied by a utility, *energy* provider, or plant that is not within the *building*:

- a. Natural gas
- b. Fuel oil
- c. Propane
- d. Steam
- e. Chilled water
- f. Hot water

10.4.6.2 Recording and Reporting


The *energy* use of each *building* on the *building* site shall be recorded at a minimum of every 60 minutes and reported at least hourly, daily, monthly, and annually. The *system* shall be capable of maintaining all data collected for a minimum of 36 months and creating user reports showing at least hourly, daily, monthly, and annual *energy* consumption and *demand*.

One good Exemption: buildings less than 25,000 ft²

Standby Power Options

Natural Gas (NG) Generators

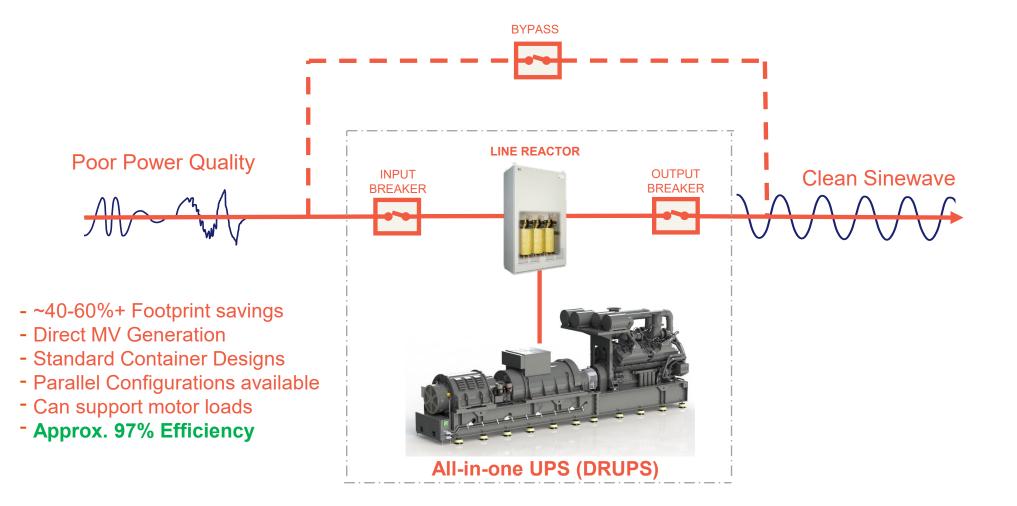
- Designed to run more than your emergency standby generators
- Lower NOx, CO2, and sulfur oxide emissions
- Opportunities for Combined Heat and Power (CHP)
- Trade-offs

Z DESIGN GROUP

Advancements in Generators

• Hydrotreated Vegetable Oil (HVO)

- Renewable diesel
- Very low carbon content
- Approved for use in many major manufacturers existing and new diesel gensets: Cummins, Caterpillar
- Potential for slight reduction in full power *
- Not prone to bacterial growth of other biodiesels
- Slightly lower energy density than diesel equates to slightly higher fuel consumption

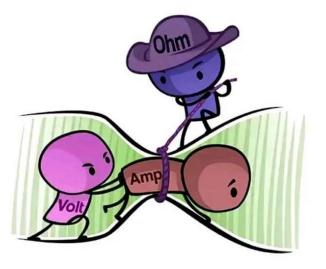

DESIGN GROUP

Ĥ

Dynamic Rotary Uninterruptable Power Supply (DRUPS)

- One package includes UPS and a backup generator
- Kinetic energy storage (flywheel) coupled to a spinning synchronous alternator
- Eliminates switching between the UPS and generator in traditional critical power architecture
- 1MVA 3.6MVA module sizes
- Capable of Tier IV emission treatment to reduce carbon footprint
- No batteries
- One of many options for big systems, to include capacitor bank
- Trade-offs

DRUPS CONFIGURATION



*Diagram and information courtesy of HITEC Power Protection.

Challenges, Planning, & Utility Coordination

Challenges to Energy Efficiency Improvements

- More VFDs & switching power supplies means more
 Harmonics
- Improved efficiency in transformers reduces impedance and increases available fault current
- Network security & intrusion
- More maintenance, more spare materials

Planning & Coordination

- Talk to your utility
- Power quality should be monitored with space planning for improvement
- Near term, distribution equipment lead times are still long
 - Packaged solutions can save on lead times
- Expand the use of Medium Voltage, plan for substation yard expansion
- No such thing as too much metering, just control the access
- Coordinate your Process Control System and your BAS

According to McKinsey & Company research, electricity demand in the US could triple by 2050.

Project Example

Total design for expansion and reliability enhancement of the complete campus electrical distribution system

- Project Scope:
 - System Evaluation and Recommendation Report
 - Preliminary Design
 - Final Design
 - 115KV to 13.2 KV Substation
 - 13.2KV Distribution network
 - 480V Transformers with Generator/UPS Backup
 - Neutral Grounding resistors
 - Construction Administration

Client Profile: Largest microchip manufacturer

Questions?