Miniaturization of Processing Equipment: Achieving Capital Efficiency with Modular Chemical Process Intensification

Brian K. Paul* & Karl Haapala, Oregon State University James T. O'Connor, University of Texas

*2017-2021 Module Manufacturing Focus Area Lead, RAPID

A fraction of the plant volume! 87% less CAPEX! 14% less OPEX ! 1/5th the payback period!

Nearly twice the NPV!

HOW? Modular chemical process intensification (MCPI)

MCPI: the use of chemical process intensification to reduce the plant footprint, thereby enabling more efficient modular fabrication

Moving work-hours to a beneficial fabrication site

Offsite Construction is helping to revolutionize the construction industry by introducing standardized, repeatable designs

Nuclear Power

Source: https://www.nextbigfuture.com/2018/04/nuscale-smallmodular-nuclear-reactor-first-ever-to-complete-nrc-phase-1-review.html **Buildings**

Source: https://www.ikopolymeric.com/offsite-constructionmethods-and-their-benefits/

Offsite Construction

Chemical Process Industry

New approaches are emerging for building plants off-site at a centralized facility ...

... and then transporting and installing modules on-site.

Motivation for Offsite Construction

EPCs & Downstream Chemical

Module Manufacturing

- Improved worker productivity via factory assembly
- Ability to assemble in a controlled environment
- Ability to conduct preliminary testing off-site
- Ability to construct in parallel with securing site permits and preparing the site
- Shorter schedules
- Gets capital working faster

Project Timeline

Chemical Process Intensification

Shrinking the footprint of chemical operations

Chemical Process Intensification

Any chemical engineering development that leads to a substantially smaller, cleaner, safer and more energy efficient [process] technology

Stankiewicz, A.I. and Moulijn, J.A. (2000). Process intensification: transforming chemical engineering. Chemical Engineering Progress, January, pp. 22-34.

Chemical Process Intensification Solar Thermochemical Processing

Conventional HX

Process Intensification enables distributed chemical processing.

Microchannel HX

Parameter	Units	μchannel HX	Commercial HX
HX mass	Kg	5	4X 70
HX volume	L	1.25	28X 35
Duty	Watts	3500	3500
Effectiveness	%	87	<80
Side 1, Air dP	in H2O	4.3	4.3
Side 2, Air dP	in H2O	3.1	3.1

Guiding Principles of Process Intensification

- 1. Maximize effectiveness of intramolecular and intermolecular events.
- 2. Give each molecule the same processing experience.
- 3. Optimize driving forces at all scales and maximize the specific surface areas to which they apply.
- 4. Maximize synergistic effects from partial processes.

Tom Van Gerven and Andrzej Stankiewicz (2009). "Structure, energy, synergy, time – The fundamentals of process intensification." *Industrial & Engineering Chemistry Research*, 48(5): 2465-2474.

Symbiosis between Modularization and CPI Mutually Beneficial Linkages

- Smaller process intensification equipment, leads to denser chemical plant layouts, which facilitates modularization
- Module mobility provides advantages:
 - geographically distributed customers/markets
 - energy sources/feedstocks
 - distribution challenges

• Capacity flexibility is possible with the "numbering-up" of modules

This is the idea behind Modular Chemical Process Intensification

Background of Case Studies

CASE STUDY 1	CASE STUDY 2	CASE STUDY 3
Specialty chemical driven	Commodity chemical driven	Commodity chemical drive
by manufacturer-operator	by developer-supplier	by developer-supplier
with the goal of	to address storage and	to take advantage of the
reducing CAPEX	distribution challenges	availability of clean energy

		I I I I I I I I I I I I I I I I I I I
	PERSPECTIVE	Manufacturer-operator
	DISTRIBUTION DRIVER	Customer
7 110/00	CHEMICAL MARKET	Specialty chemical
Ela	PI INNOVATION	OTS Tubular RX Batch to Continuous
	CLIENT MOTIVATION	Reduced CAPEX
	PLANT SIZE REDUCTION	Vol = 250X
	PHASE OF ASSESSMENT	1 year post-Pilot
	NUMBERING-UP?	No numbering-up

CASE STUDY 1

Project Frame and Basis

	Mode	Cycle time (hours)	Process Tchnlgy	Heat transfer area (ft ²)	Heating time (hours)	Heat Ioss (kW)	Flushing material (gallons/ batch)	Nitrogen purge (SCF/ batch)	Cooling system
CSB	Batch	48	12,000 gal. stir tank reactor	628	10	17	1500	2800	water
МСРІ	Continuous	N/A	Tubular reactor	39	N/A	1.2	N/A	N/A	air

(ISBL) CAPEX-Driver Differences Brownfield SIMOPS safety Height Footprint impact 250X !! CSB 10,000 s.f **30 ft** High MCPI 6 ft 200 s.f. Minimal

CASE STUDY 1

CAPEX, OPEX, NPV, and Payback Period

CAPEX (USD)	NPV	PAYBACK PERIOD (MONTHS)
MCPI is 87% lower	MCPI is 1.9 times higher	MCPI is 80% shorter
		CSB: 12.3 MCPI: 2.5
PEX (USD)	O&M FTE	COST OF POWER & UTILITIES
CPI is 14% lower	MCPI is 91% lower	MCPI is 40% lower
	CSB: 9 MCPI: 0.8	CSB: \$40 K MCPI: \$24 K

- Reduced module installation time and effort (SIMOPS)
- Earlier recovery of investment from early production and sales
- Unit productivity rate improvements for module fabrication
- Pre-shipment testing of modules enhances performance assurance

Case Study 2 ATAMI

	4	A
	PERSPECTIVE	Developer-supplier
	DISTRIBUTION DRIVER	Chemical handling
	CHEMICAL MARKET	Commodity
loyments	PI INNOVATION	Reactor and PSA
	CLIENT MOTIVATION	Chemical storage and distribution challenges
	PLANT SIZE REDUCTION	Footprint = 52 x
	PHASE OF ASSESSMENT	6 years post-Pilot
	NUMBERING-UP?	Numbering-up

>230+ deployments

Distributed Commodity Production

OPEX Features and Other Assumptions Plant Area for 300 normal meters cubed per hour Capacity *MCPI plant is one module					ntional Stick-Built 52X reduction in plant area MCPI
	Process Technology	Footprint	Brownfield SIMOPS impact	Operations Staff	Scale-up Rate
CSB	Conventional reactor and PSA	24,000 ft ²	High	Scales with plant size	Full capacity in 3 years
МСРІ	Catalytic reactor and Intensified PSA	460 ft ²	Minimal	1 FTE (1-2 skids) 2 FTE (3-5 skids)	Double capacity beyond year 2

At the baseline capacity of 300 normal meters cubed per hour:

- 30-40% reduction in OPEX (better labor utilization, conversion + energy efficiency)
- 50% reduction in CAPEX
- Overall 42% reduction in production cost

Distributed Commodity Production CAPEX Comparison (CSB : MCPI)

- Interconnection systems (piping and electrical) are the primary drivers for reduced MCPI CAPEX
- Equipment costs for CSB become lower than those for MCPI above a 2-train capacity; instrumentation at a 5 trains
- Other costs (engineering, buildings, and contingency) are lower for MCPI relative to CSB

Distributed Commodity Production

CASE STUDY 2

Top Drivers of Superior MCPI Capital Efficiency

55 Drivers from the Literature / Top 6 Drivers

- PI equipment requires fewer interconnecting systems
- Reduced construction footprint, less land, less infrastructure, etc.
- Reduced CapEx due to reduced number of components
- Reduced equipment assembly/installation time and labor effort
- Design effort reduction from DOBM for second, third, fourth, etc. modules
- Module fabricator learning curve benefits from standardization (DOBM)

Case Study 3

	AA		
	PERSPECTIVE	Developer-supplier	
	DISTRIBUTION DRIVER	Access to energy	
	CHEMICAL MARKET	Commodity	
	PI INNOVATION	Catalytic reactor and intensified separations	\supset
	CLIENT MOTIVATION	Availability of cheap energy	
Transforming Process Industries	PLANT SIZE REDUCTION	Footprint = 8 x	
	PHASE OF ASSESSMENT	Proof of concept	
	NUMBERING-UP?	No numbering-up	

Leveraging Cheap Distributed Energy

Comparisons DI / Drococo / ODEV Eastures		
Jomparison: PI / Process / OPEX reatures	Conventional Stick-Built	(CSB)
Plant Area for 146k MTPY Capacity	8X reduction in	
*MCPI plant has 5 modules	plant area	

	Process Technology	Footprint	Brownfield SIMOPS impact	Operations Staff	Learning Curve	Scale-up Rate
CSB	Conventional reactor and separations	141k sq. ft.	High	Scales with plant size	N/A	Full capacity in 3 years
MCPI	Catalytic reactor and intensified separations	18k sq. ft.	Minimal	8 FTE (any # of trains)	80%	Double capacity beyond year 2

years to 2.5 years

Leveraging Cheap Distributed Energy CASE STUDY 3 Top Drivers of Superior MCPI Capital Efficiency

55 Drivers from the Literature / Top 4 Drivers

- Reduced time of fabrication of equipment (parallel fabrication, reduced size, piping, etc.)
- Faster-time to market for new investments; earlier product sales due to shorter processing times
- Economic benefits from earlier completion; Earlier recovery of investment from early production and sales
- Increased efforts for engineering of new technologies
- Higher capital expenditures for new advanced equipment
- Significantly higher energy demand

KEY TAKE-AWAYS MCPI is NOT a "one-size fits all" solution Sometimes CPI technology does not exist "off-the-shelf" The development of specialized CPI technology must be managed

> Key drivers were NOT identified as top drivers by the case study partner

Sourcing of specialty microchannel components was difficult.

Conventional HX

Microchannel HX

Parameter	Units	μchannel HX	Commercial HX
HX mass	Kg	5	4X 70
HX volume	L	1.25	8X 35
Duty	Watts	3500	3500
Effectiveness	%	87	<80
Side 1, Air dP	in H2O	4.3	4.3
Side 2, Air dP	in H2O	3.1	3.1

High Temperature Recuperators

Across Breadth of Production Volumes

ATAMI

Polymetal Additive Manufacturing Solar Thermochemical Processing

ATAMI Polymetal Additive Manufacturing Inc625/GRC42 Transitional Alloy (Paul et al. 2021)

Simultaneous Hot Wire-Fed and Powder-Fed Laser Directed Energy Deposition (Meltio M450)

+

GRCop 42 (30 wt%)

Inconel 625 (70

wt%)

13X 个 in Thermal Conductivity (20X size reduction)

Programmable Machine Tool

Primary Alloys

Materials

Case Study Key Learnings

- 1. CPI technology significantly reduces plant size, which reduces construction scope, enables modularization, reduces CAPEX, reduces time-to-market and accelerates capital recovery
- 2. Operating expenditures are reduced in MCPI plants due to the need for less operating staff due to the conversion of the chemical process from batch to continuous or from a reduced number of operating steps
- 3. Opportunities exist to convert specialty chemical operations from **batchto-continuous** chemical processing reducing CAPEX and time-to-market
- 4. CPI technology significantly reduces the cost of interconnecting systems
- 5. When developing specialty CPI technology, the cost of process intensification equipment is an important driver that must be managed

MCPI challenges old plant design paradigms and offers new opportunities Substantial benefits may be realized, if managed

A visionary champion is critical to advance MCPI within large organizations

Pursue MCPI through the AIChE RAPID Institute: <u>https://www.aiche.org/rapid</u>

Modular Chemical Process Intensification "Boot Camp"

www.aiche.org/ch375

When: June 21-24, 2022 Where: Corvallis, OR at OSU ATAMI

- Advanced Technology and Manufacturing Institute (ATAMI) is a 80,000 sq ft R&D and university commercialization facility and past home to the RAPID Modular Manufacturing Focus Area.
- Advanced manufacturing technologies available through ATAMI include laser powder bed fusion, laser directed energy deposition, binder jetting and polymetal additive manufacturing among others.

What:

- Use characteristic time-scale analysis to identify and design PI components for an MCPI application.
- · Cost/performance trade-offs in developing innovative PI component designs.
- Engage additive manufacturing/3D printing equipment used to build PI components.
- Consider the deployment of MCPI plants through Engineering, Procurement and Construction firms.
- · Consider the business rationale for designing and scaling up an MCPI plant.

Who Should Attend:

- Professional engineers interested in advancing MCPI within their organizations
- Open to anyone including RAPID members

Instructors:

- Professor Brian Paul is a manufacturing engineering professor with over 20 years experience helping small companies take process intensification technology to market
- Professor Goran Jovanovic is a chemical engineering professor with over 20 years of experience developing atto/nano/microtechnologies for industrial-scale chemical engineering applications

THANK YOU!

QUESTIONS?

