

Risk, Reward, and Risk Taking: Construction Workers' Perspective

Mohammed Azeez

Northwest Construction Consumers Council (NWCCC)

June, 2019

COLLEGE OF ENGINEERING

School of Civil and Construction Engineering

Construction Safety

Rate of fatalities in construction, selected countries, 2013 Source: (CPWR, 2016)

Construction Sat

State of Construction Safety

Number of nonfatal injuries resulting in days away from work in construction,1992 to 2015. Source: (CPWR, 2016)

Number of fatalities in construction, 1992 to 2015.

Source: (CPWR, 2016)

Accident Causation: Construction

Root causes of construction accidents (Abdelhamid and Everett, 2000):

- Failure to identify hazards,
- Proceeding with hazardous activity after diagnosing its riskiness,
- Acting unsafely despite the worksite conditions.

Behavioral-related root causes of accidents (Gambatese et al, 2016):

- mistake/error,
- absent-minded/forgetful,
- uncaring/indifferent,
- ignorance,
- poor risk management, and
- high risk tolerance

Accident Causation

Construction workers are at the forefront of accidents, and often the last point of contact in a safety system failure.

How often do you knowingly take a calculated risk even though it is against your training/work safety plan?

208 Respondents

How Are Decisions Made?

Figure from: Lahtinen, 2016

Risk Perception

Intuitive feelings and experiences are still the predominant method by which human beings evaluate risk.

In simple terms, risk perception is defined as the personal evaluation of daily encountered hazards.

Copyright © 1994 by Garry Trudeau. Reprinted with permission.

Figure from: Slovic et. al. (2004)

Risk Perception

Contractors plan, manage, and mitigate the <u>residual safety risk</u> passed down from the designer.

Construction is dynamic, Sites have varying conditions, and No task-specific quantifiable safety metric [1].

Therefore, construction relies on safety professionals' assessments, as well as workers' perceptions and their assessment of risk.

[1] Seo, JoonOh, et al. "Computer vision techniques for construction safety and health monitoring." Advanced Engineering Informatics 29.2 (2015): 239-251.

Risk Perception

Why use worker risk perception?

Worker risk perception is influenced by the same factors that affect their perception in their day-to-day work [1].

Workers are able to adequately assess the risk in their own work [2].

How?

- Self assessment (Likert scale)
- Self assessment (frequency * exposure)
- Hazard identification (using a picture of a scenario; Job Hazard Analysis)

[1] Weyman, A. K. and D. D. Clarke (2003). "Investigating the influence of organizational role on perceptions of risk in deep coal mines." Journal of Applied Psychology 88(3): 404.
[2] Hallowell, Matthew Ryan. "A formal model of construction safety and health risk management." (2008).

Hazards present:

- Fall hazard
- Electrical hazard
- Struck by hazard
- .

Bad safety practices:

- Incorrect ladder use
- No safety glasses
- •

Good safety practices:

• Proper tool handling (using the tool bag)

			Job Hazard Analys
Job: Department or	location:		(Company name and addres
Task or Step	Hazards	Controls	Personal Protective Equipment (PPE)
			JHA by:
lni.v	wa.gov		Date:

- Construction workers do not act in an unsafe manner intentionally (Tixier et al., 2014).
- Research shows that preconceptions in risk perception cause risk misjudgments which in turn might cause unsafe conduct (Arezes and Miguel, 2008).
- The problem lies in a common misconception that the higher an individual's level of competency in risk perception, the more likely they will work in a safe manner.
- However, research indicates that being aware of the risk associated with one's work does not necessarily mean that he/she will adopt safe practices in their work (Mullen, 2004).
- Mullen (2004) noted that employees often weigh the negative aspects of their jobs against the positive aspects.

An occupational reward can be anything of value (tangible or intangible) that an employer or an organization delivers to its employees whether **intentionally or unintentionally** in contemplation of the employee's work contributions and to which employees as individuals attach a positive value as a satisfier of certain self-defined needs" (Shields et al., 2016).

• Not all rewards are created equal!

Relationship of Total Reward Approach to Maslow and Herzberg Models

Total Reward Approach	Maslow's Motivation Theory	Herzberg's Two-Factor Model	Expected Outcome with
			respect to Employees
Base pay	Physiological Need	Hygiene Factor	Attract
Cash benefits	Safety Need	Hygiene Factor	Attract
Performance-related pay	Esteem Need	Motivator Factor	Attract, Retain
Learning and Development	Cognitive Need	Motivator Factor	Motivate
Succession planning	Safety Need	Motivator Factor	Retain and Motivate
Career progression	Self-Actualization	Motivator Factor	Attract, Retain, and
			Motivate
Management culture	Belonging Need	Hygiene Factor	Attract, Retain
Performance support	Belonging Need	Hygiene Factor	Retain
Work group affinity	Belonging Need	Hygiene Factor	Retain, and Motivate
Work-life balance	Belonging Need	Hygiene Factor	Retain
Job challenge	Aesthetic Needs	Motivator Factor	Attract
Responsibility	Esteem Need	Motivator Factor	Attract
Autonomy	Aesthetic Need	Motivator Factor	Attract
Task verity	Aesthetic Need	Motivator Factor	Attract

https://www.ashokcharan.com/

In people's minds, risk and rewards are **negatively** correlated. Currall et al. (2006)

In the real world, risk and reward are often positively correlated.

Oregon State University

College of Engineering

Starr (1969)

Risk-Reward Trade-off: Background

Risk-Reward Trade-off: Background (Cont'd)

Construction Safety Risk and Occupational Reward Trade-off

Data Collection

• Survey of over 200 construction workers, nationwide

Survey participation rate by state

• 37 interviews, 6 construction sites, 5 companies

Respondent assessment of their work safety risk

Reward representation by category as indicated by respondents

Reward importance as indicated by respondents

Risk-Reward Relationship

Stated Relationship

Perceived relationship between risk and reward

Risk-Reward Relationship

Revealed Relationship

Risk and Reward Perception Variable		Scale	
A1: Worker's knowledge of safety	2.06	1 = very high level of knowledge, 7 = very low level of knowledge	0.279
A2: Company's knowledge of safety	2.00	1 = very high level of knowledge, 7 = very low level of knowledge	0.261
A3: Fear of accident	2.93	1 = very little fear, 7 = extreme fear	
A4: Personal vulnerability	3.32	1 = extremely unlikely, 7 = extremely likely.	
A5: Potential consequences	4.45	1 = low impact potential, 7 = very high impact	
A6: Preventability of risk causing the accident	2.71	1 = extremely preventable, 7 = extremely unpreventable	0.20
A7: Possibility of worker intervention	2.93	1 = very high possibility, 7 = very low possibility	0.20
A8: Potential to impact a large number of workers	2.98	1 = very low level of impact, 7 = very high level of impact	0.34
A9: Long-term potential of risk	1.84	1, immediate impact, 7 after a very long time	
Reward Perception	1.85	1 = very satisfied with reward, 7 = very dissatisfied with rewards	
Job satisfaction	1.95	1 = very satisfied with my job, 7 = very dissatisfied with my job	

Risk-Taking

Decision Making

Will you work on a safe site if your benefits are low (not that high)?

Will you work on a hazardous site if your benefits are high (higher than what you normally work with)?

Do you have a preference regarding site conditions, and job benefits?

Theme/Group (% of all 37 participants)	Theme Description
A (16.2%)	Safety is prioritized over reward
B (35.1%)	Working on a safe site with low benefits is not acceptable
C (24.3%)	High risk for high reward
D (10.8%)	Yes to all jobs, as long as I am paid
E (13.5%)	Safety is good, but a bit more risk is acceptable too

Decision Making

Reasons for Taking Risk	Freq. (%)
Cut corners to get the job done	19/37 (51.5)
Every job have some risk, even if I don't take risk myself	10/37 (27%)
I don't risk safety	5/37 (13.5%)
Other reasons	3/37 (8%)

Reasons for not	Freq. (%)
Taking Kisk	
high	10/37
consequences:	(27%)
possible	
injury/outside of	
my comfort zone	
I value my	17/37
life/getting back	(46%)
to my family/no	
reason to take	
risk	
Other workers	10/37
safety, I can get	(27%)
fired, company	
policy, I find ways	
to do it safely	

Conclusions

- Construction workers do take risks in their jobs
- Risk perception is still widely used in construction safety assessment
- Risk perception is not secluded from rewards perception
- Workers have no understanding of the risk-reward relationship in their jobs
 - However, worker decisions are influenced by the risk-reward relationship
- Risk taking is not always related to personal tendencies
 - Normalization of deviance
 - Psychological contract
 - Risk-taking for other's benefit (employer/client)

Path Forward

- Assessments of risk-taking, and risk-reward perception, are required
- Training for risk-reward implication, and risk homeostasis.
 - For example: Signing bonus, danger money, productivity bonus.
- Crew re-assignment (based on collective risk-taking balance)
- Is it risk-taking or <u>decision-making under uncertainty</u>?

References

Abdelhamid, Tariq S., and John G. Everett. "Identifying root causes of construction accidents." Journal of construction engineering and management 126.1 (2000): 52-60.

Arezes, Pedro M., and A. Sérgio Miguel. "Risk perception and safety behaviour: A study in an occupational environment." Safety Science 46.6 (2008): 900-907.

Chen, Qian and Ruoyu Jin (2015). "A comparison of subgroup construction workers' perceptions of a safety program." Safety Science **74**: 15-26.

CPWR, The Center for Construction Research and Training (2016). The Construction Chart Book: The U.S. Construction Industry and its Workers. www.elcosh.org, CPWR.

Currall, Steven C., et al. "What drives public acceptance of nanotechnology?." Nature nanotechnology 1.3 (2006): 153.

Gambatese, John A., Catarina Pestana, and Hyun Woo Lee. "Alignment between lean principles and practices and worker safety behavior." Journal of construction engineering and management 143.1 (2016): 04016083.

Hewitt, AON (2012). Total Rewards Survey: Transforming Potential Into Value.

Lahtinen, Taija. (2016). Radio speech communication and workload in military aviation: a human factors perspective. University of Oulu, Finland ISBN 978-952-62-1428-3

Mullen, Jane. "Investigating factors that influence individual safety behavior at work." Journal of safety research 35.3 (2004): 275-285.

Shappell, Scott A., and Douglas A. Wiegmann. "The human factors analysis and classification system--HFACS." (2000).

Shields, John, Michelle Brown, Sarah Kaine, Catherine Dolle-Samuel, Andrea North-Samardzic, Peter McLean, Robyn Johns, Jack Robinson, Patrick O'Leary and Geoff Plimmer (2016, 2016). "Managing Employee Performance and Reward." Cambridge University Press.

Slovic, Paul, Melissa L Finucane, Ellen Peters and Donald G MacGregor (2004). "Risk as analysis and risk as feelings: Some thoughts about affect, reason, risk, and rationality." Risk Analysis **24**(2): 311-322.

Starr, Chauncey. "Social benefit versus technological risk." Science (1969): 1232-1238.

Tixier, Antoine J-P., et al. "Psychological antecedents of risk-taking behavior in construction." Journal of Construction Engineering and Management 140.11 (2014): 04014052.

Wilde, Gerald JS. "Target Risk 3." Risk Homeostasis in Everyday Life. Complimentary copy, Web-version (Chen and Jin): 03-20.