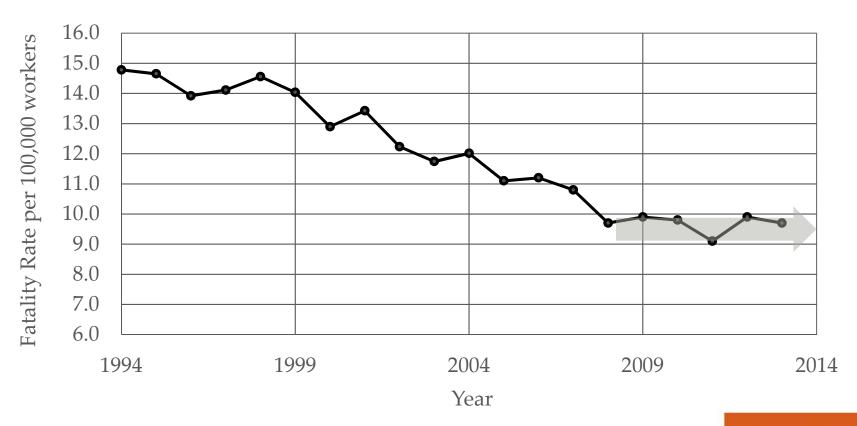
Using Precursor Analysis to Prevent Low-Frequency, High-Impact Events, Including Fatalities

John Gambatese

Professor, School of Civil and Construction Engineering Oregon State University

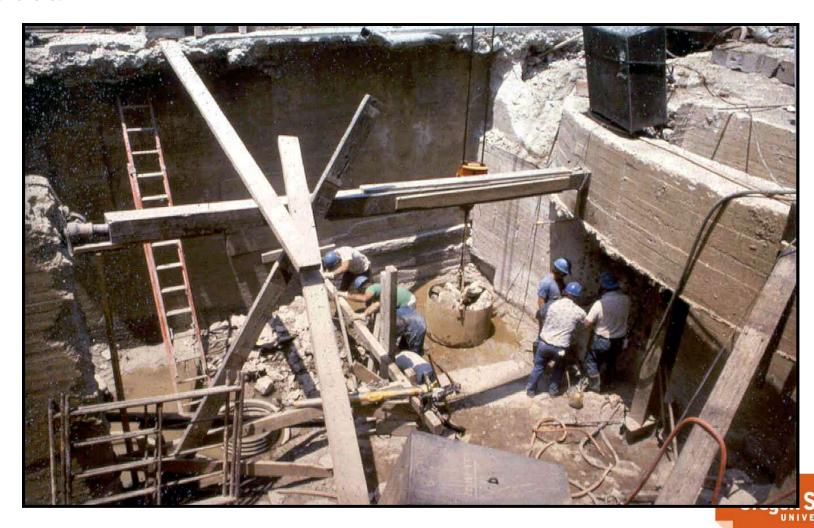
Northwest Construction Consumer Council

"Safety Excellence" Meeting
Lynnwood Convention Center, Lynnwood, WA
June 15, 2017



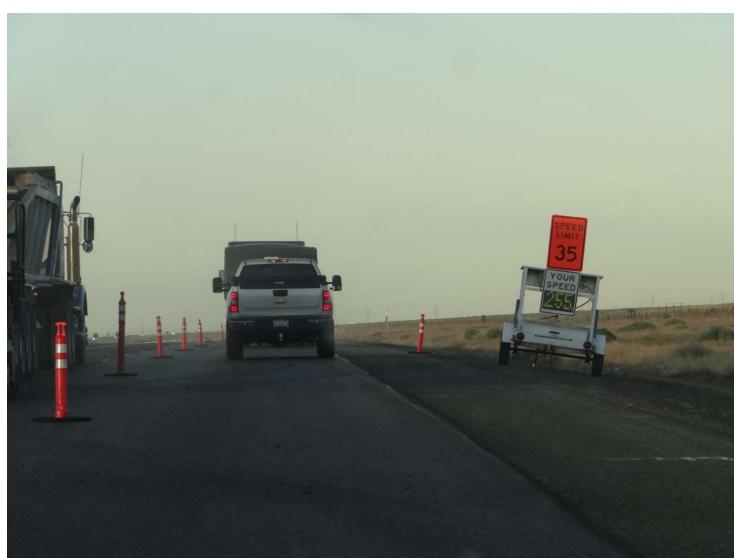
Co-Investigator:

Dr. Matthew Hallowell, University of Colorado at Boulder



Research Question: How can we (further) improve construction safety?

Antecedent Question: Why do accidents (still) occur?

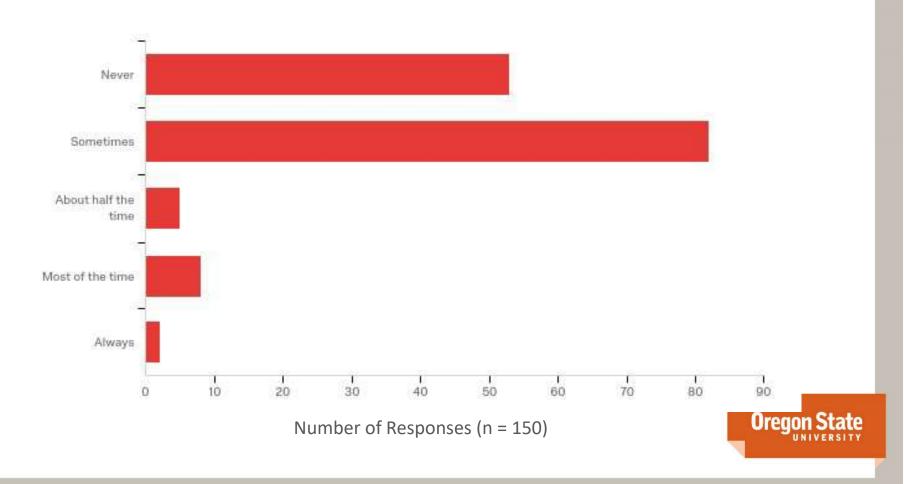


Source: CII, EM160-21, 2006

Safety Culture/Climate

Risk and Reliability

on State


Risk and Reward

Risk and Reward - Survey Question

 How often do you knowingly take a calculated risk even though it is against your training/work safety plan?

Hazard Assessment, Risk Projection, and Decision-making Behavior of ALL employees!

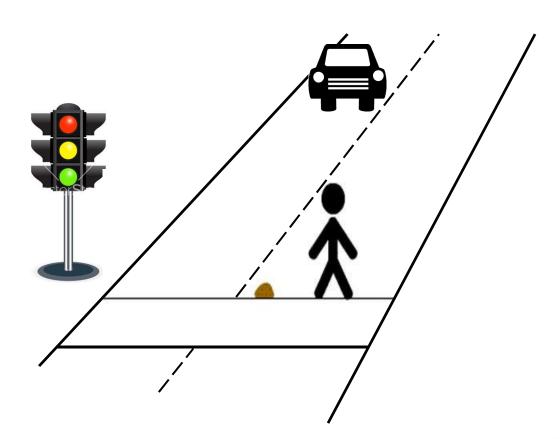
Potential Root Causes of Accidents	Human Behavior
Mistake / error	Unintentional
Absent-minded / forgetful	Unintentional
Uncaring / indifferent / giving other goals higher priority	Willful
Ignorance	Unintentional
Poor risk management	Willful
High risk tolerance	Willful
Other (e.g., Act of God)	Unrelated

To be effective, a safety program should:

Address ALL potential root causes

Address different types of behavior differently

Additional Considerations


- Risk normalization
- Normalization of deviance
- Uncertainty
- Distractions
- Chronic unease

"We've considered every potential risk except the risks of avoiding all risks."

Everyday Life Question: What do you think about when deciding whether to cross a street?

CII RT-321

 Using Precursor Analysis to Prevent Low Frequency/High-Impact Events (including fatalities)

Dillon Alexander,

University of Colorado at Boulder

John Barry, SABIC Innovative Plastics

Matthew Bedrich, Shell

Jim Duncan, Jacobs

Shane Farrah, IV Driver

John Gambatese,

Oregon State University

Larry Green, British Petroleum

Matthew Hallowell,

University of Colorado at Boulder

John Hogan, SNC Lavalin

Anthony Littlefair, Enbridge Pipelines

Donna Parry, Procter and Gamble

Gregg Slintak,

Consolidated Edison Co. of New York

Irvin Tyler, Shell

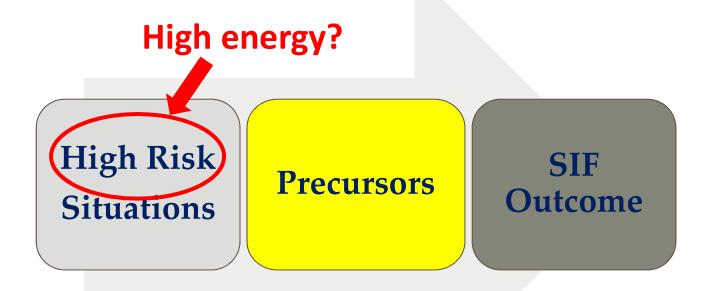
Shawn Xu, Conoco Philips

Rick Zellen, Zurich

CII RT-321: Key Definitions

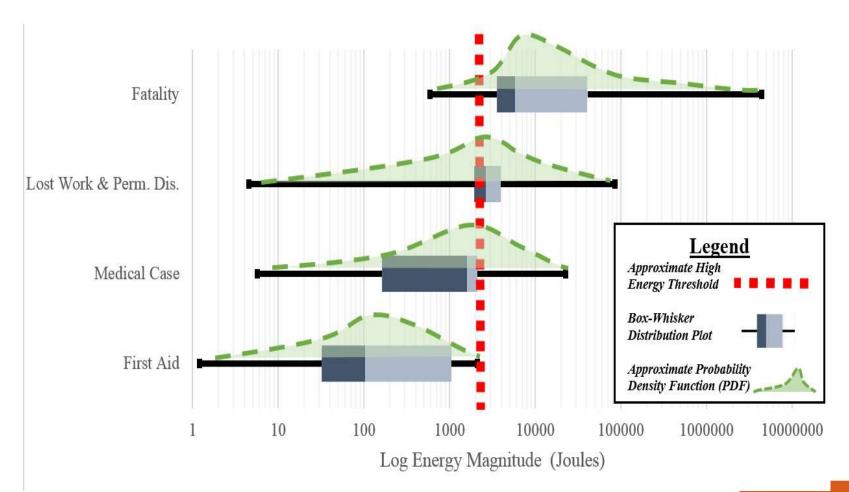
Serious injury or fatality (SIF) event:

An event that results in or has the potential to result in a fatality or life-altering injury or illnesses. HILF = high impact, low frequency event


Precursor*:

Reasonably detectable event, condition, or action that serves as a warning sign of an event, i.e., an anomaly

*Different than a leading indicator



When should we use precursor analysis?

Does energy magnitude predict injury severity?

Precursor Analysis Process

Is this a "high energy" situation?

Are precursors are present?

Should the work proceed?

Jregon State

Identify Precursors

Experiment to Test Precursors Validate with Multiple Groups

Objective Statistics

NIOSH Fatality Assessment and Control Evaluations (FACE)

Work-Safe BC Reports Reports from Research Team

Team reviews cases and produces list of factors; plus additional factors added from outside experts

List of Factors

- **X**
- X
- X
- X
- X
- X

Investigation Form

- ????????
- ????????
- ?????????
- ????????

Oregon State

Identify Precursors

Experiment to Test Precursors

Validate with Multiple Groups

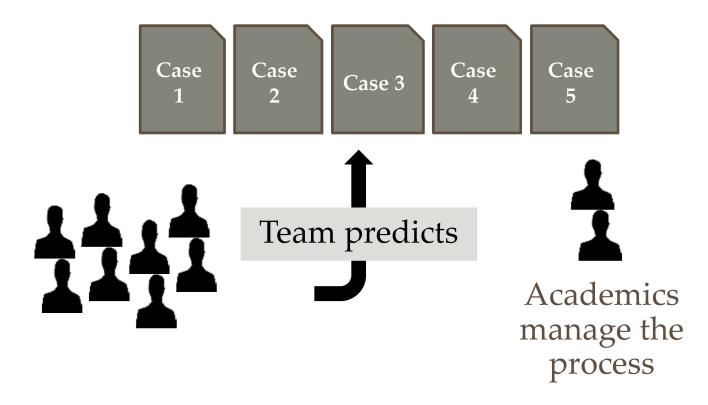
Objective Statistics

HighEnergy
Success

Highenergy
near miss

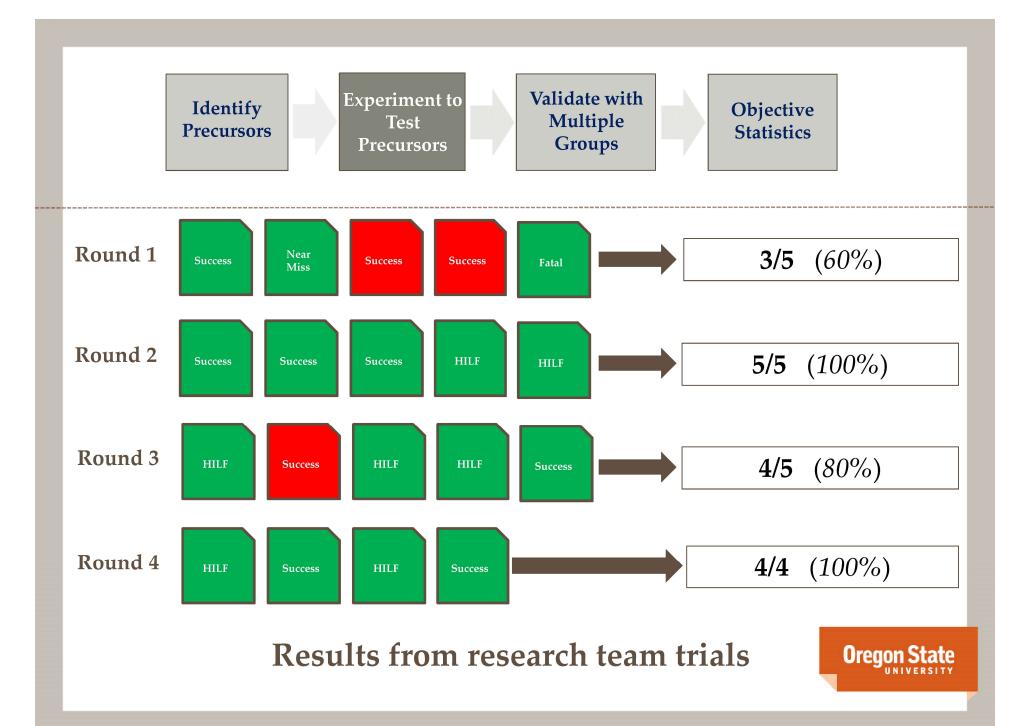
Fatal or
Disabling

(1)


Use precursor investigation form to collect LEADING data for three types of cases

Oregon State
University

Identify Precursors


Experiment to Test Multiple Groups

Objective Statistics

Conduct experiment round

Identify Precursors

Experiment to Test Precursors Validate with Multiple Groups

Objective Statistics

Typical Professionals

Demographic Information

of Participants: 13

Median Age: 53

Median Years of Experience: 20

Inexperienced Students

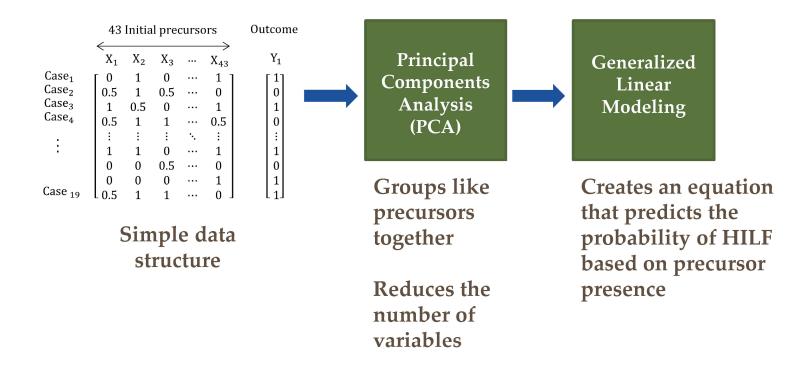
Demographic Information

of Participants: 10

Median Age: 29

Median Years of Experience: 2

Repeat experiment with diverse groups of people



Identify
Precursors

Experiment to
Test
Precursors

Validate with
Multiple
Groups

Objective
Statistics

Find an equation for the probability of an event

Identify **Precursors** **Experiment to Test Precursors**

Validate with Multiple Groups

Probability

$$e^{(-1+0.20*X_1+0.56*X_2+0.46*X_3+0.24*X_4)}$$

$$= \frac{e^{(-1+0.20*X_1+0.56*X_2+0.46*X_3+0.24*X_4)}}{e^{(-1+0.20*X_1+0.56*X_2+0.46*X_3+0.24*X_4)}+1}$$

Reduce complexity for ease of use

Poor Work Planning	Factor Presence	Weight	Weighted Score
Crew Members are Unaware of Work Procedure		х1	
No/Poor Plan to Address Work Changes		x1	
No/Poor Pre-Task Plan or Discussion Specific to Work		х1	
Productivity Dominated Culture	Factor Presence	Weight	Weighted Score
Crew Members are NOT Active in Safety		х2	
Fatigue		x2	
Schedule/Productivity Pressure		x2	
Significant Overtime		х2	
Prior Safety Performance is Poor		x2	
Vulnerability to High Energy	Factor Presence	Weight	Weighted Score
Lack of Control Barrier and/or Visual Warning		х2	
Line of Fire is Uncontrolled		x2	
Improvisation		x2	
Outside Safety Influences	Factor Presence	Weight	Weighted Score
Congested Workspace/Crowding		x1	
Distracted Workers		х1	
Limited Safety Supervision		x1	
Poor Quality or Inexperienced Foreman		х1	
Working Alone		x1	

Identify Precursors

Experiment to Test Precursors Validate with Multiple Groups

Objective Statistics

Case #	Regression Model Probability	Regression Model Skill	Precursor Assessment Rubric Score	Precursor Assessment Rubric Skill
22	73.3%	Correct	7.5	Correct
20	54.3%	Correct	5	Correct
29	62.4%	Correct	6	Correct
27	36.3%	Correct	2	Correct
21	58.1%	Correct	5	Correct
23	76.3%	Correct	8	Correct
24	71.6%	Correct	8	Correct
25	56.1%	Correct	4.5	Correct
26	78.4%	Correct	8.5	Correct
28	65.5%	Correct	6	Correct

Predicting with the Precursor Analysis Scorecard

1

2

3

Step 1: Enter presence of each factor:

0 → 'Not Present'

½ → 'Partially Present'

1 → 'Present'

Poor Work Planning	Factor Presence	Weight	Weighted Score
Crew Members are Unaware of Work Procedure		x1	
No/Poor Plan to Address Work Changes		х1	
No/Poor Pre-Task Plan or Discussion Specific to Work		х1	
Productivity Dominated Culture	Factor Presence	Weight	Weighted Score
Crew Members are NOT Active in Safety		x2	
Fatigue		x2	
Schedule/Productivity Pressure		x2	
Significant Overtime		х2	
Prior Safety Performance is Poor		x2	
Vulnerability to High Energy	Factor Presence	Weight	Weighted Score
Lack of Control Barrier and/or Visual Warning		x2	
Line of Fire is Uncontrolled		x2	II.
Improvisation	9	x2	Ť
Outside Safety Influences	Factor Presence	Weight	Weighted Score
Congested Workspace/Crowding		x1	
Distracted Workers		х1	
Limited Safety Supervision		х1	
Poor Quality or Inexperienced Foreman		х1	, i
Working Alone		х1	
Total Score (if score equal to or gr			

Step 2: Multiply each factor by the weight

Step 3: Sum the weighted score

Step 4: Total exceeds 4?

HILF event is more likely than not if total exceeds 4

Let's give it a try.

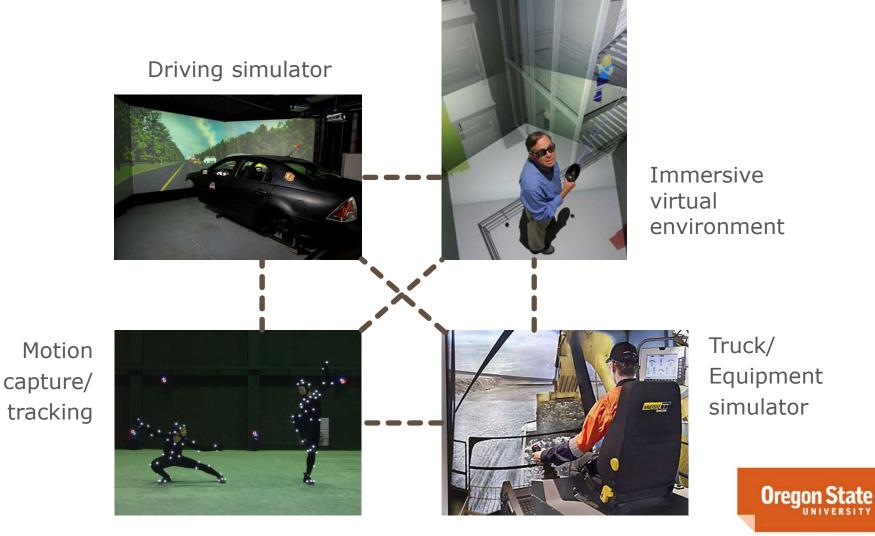
- 1. Watch video of construction site interview
- 2. Complete the Precursor Analysis Scorecard

The actual outcome?

Potentially fatal, near miss.

Conclusions and Next Steps

- Despite strong safety programs, fatalities impact even top performing organizations
- Precursor analysis augments a strong safety program
 - But, it cannot serve as a replacement for other program elements
- This is a starting point; more data will allow others to build on the results and methodology
 - To facilitate progress, need to address the barriers that presently impede the flow of information
- We welcome further collaboration and research!



Looking to the Future

- Resilient Infrastructure and Safety Research Lab
- \$1,000,000 seed funding from MDU Construction Services Group

Working Together to Improve Safety

- Construction Safety Research Partnership (CSRP)
 - Explore and develop new ways to improve safety
 - Leverage collective knowledge and resources
 - Safety leadership for the construction industry

New Partners Welcome!

Using Precursor Analysis to Prevent Low-Frequency, High-Impact Events, Including Fatalities

- Thank you for your interest!
- Questions? Comments?
- For more information: john.gambatese@oregonstate.edu

