Research and Training with UW Faculty and Students
Center for Education and Research in Construction (CERC)

CERC: Applied Research & Training

> What is CERC? Who is CERC?

> Partnerships showing Variety and Impact
 – UW Capital Planning and Development: LED Lighting Study
 – PacTrans (US DOT): Public Private Partnerships and Roadway Safety
 – Sound Transit: Asset Data & Building Information Modeling
Build It and They Will Come

> A Department of Construction Management
 (first graduates in 1965)

> A Unique Lab Facility
 – former Navy building @ Magnuson Park, 1975
 – Our lab: Building 5, Bay B (25,000 sq.ft., high-bay/low-bay)
 – Labs and classrooms
 – Build-out for CM 2004-2009
 > Materials and Methods Lab
 > Virtual Construction Lab
 > Collaboration suites
 > Classrooms and Library
Then and Now - Materials and Methods Lab

CENTER FOR EDUCATION AND RESEARCH IN CONSTRUCTION
Department of Construction Management, College of Built Environments
Virtual Construction Lab

CENTER FOR EDUCATION AND RESEARCH IN CONSTRUCTION
Department of Construction Management, College of Built Environments
Industry Made It Happen

Industry – Academia Partnership
CERC – Who We Are Today

Research and Training

SHARE Lab: Safety & Health

ESC Lab: Energy & Sustainability

CTOP Lab: Communication & Technology

Project Delivery: Design-Build & Public Private Partnerships
CERC – SHARE Lab

Laboratory for Safety and Health Advancement through Research and Education

> iSafe Field Inspection System
> Computer Animated Fall Protection Training
> 3D Virtual Construction Safety Training

SHARE Research Funders:
Hewlett Packard, Inc. (HP)
Occupational Safety and Health Administration (OSHA)
National Science Foundation (NSF)
National Institute for Occupational Safety and Health (NIOSH)
Royalty Research Fund
CERC – ESC Lab

Laboratory for Energy & Sustainability in Construction
> Energy-related risk management
> Phased Investment
> Energy Retrofit Loan Analysis
> Optimized portfolio analysis for community-based photovoltaic investment

ESC Research Funders:
The Center for Construction Research and Training
Oregon Department of Transportation
PacTrans
ELECTRI International
Laboratory for Communication, Technology and Organizational Practices

> BIM to BUILDER workflow
> Team Practices for energy design
> How and why IPD and collaborative strategies are more reliable
> Rebaselining workflows for collecting as-is data for existing buildings

CTOP research funders:
- Skanska Building USA, Inc.
- Sound Transit
- U.S. Army Corps of Engineers
- General Services Administration
- University of Washington Capitol Projects Office
- National Science Foundation
CERC – Project Delivery

Expertise in Design-Build and PPP

> Public Private Partnerships
> Contractual terms for safety
> Contractual safety incentives
> Improved roadway safety
> Tools to monitor contractor performance
> Tools to forecast time and costs

Project Delivery research funders:
- PacTrans (US DOT)
- WS DOT
- UW Capitol Development and Planning

CENTER FOR EDUCATION AND RESEARCH IN CONSTRUCTION
Department of Construction Management, College of Built Environments
Center for Education and Research in Construction

CERC: Applied Research & Training

> What is CERC? Who is CERC?

> Partnerships showing Variety and Impact
 - UW Capital Planning and Development: LED Lighting Study
 - PacTrans (US DOT): Public Private Partnerships and Roadway Safety
 - Sound Transit: Asset Data & Building Information Modeling
Partnership UW Capital Planning and Development

Safety Technology: LED for Temporary Construction Lighting

Dr. Ken-Yu Lin

Associate Professor
Construction Management
Safety _ Cost _ Energy

- Natural Lighting
- Temporary Lighting
- Task Lighting

Egress Lighting

- Electrical Sub
- Bid Package
- G.C.
- General Req.

Project Owner
Traditional Temp. Lighting Setup

Incandescent lamps (100W or 150W) suspended from the slab deck at a 10’ x 10’ grid. (Smith, 2007)

Suspended compact fluorescent lamps, (Clear-Vu Lighting, www.clearvulighting.com)
Low Voltage LED Lighting Setup

Case Study Project

- UW Bothell Phase 3
 - **Location:** Bothell, WA
 - **Facility Size:** 75,000 ft²
 - **Type of Project:**
 - Academic Building
 - New Construction
 - **Construction Duration:** 17 Months
 - **Total Project Cost:** $68 Million
 - **GC/CM:** Lease Crutcher Lewis
 - **EC/CM:** Nelson Electric
 - **LED Manufacture:** Clearvu Lighting

http://pm.uw.edu/cpo/cpoutlook/uw-bothell-discovery-hall
LED Lighting Setup @ UWB P3

• Meeting the 5 FC OSHA requirement

Temporary lighting power cables installed within concrete slab

Temporary lighting whips and light fixtures dropped and exposed below ceiling deck
Installation_Costs
Data Collection

- Interview with Clear-Vu representative
- Site interviews with project staff
- Survey questionnaires distributed to workers on site
- Cost information derived from Nelson Electric and others
Survey Findings

- 21 response (of which 19 were analyzed)
- Agreement level (1~5 Likert scale)

<table>
<thead>
<tr>
<th>Description</th>
<th>Average rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LED lighting</td>
</tr>
<tr>
<td>Distracted from work</td>
<td>2.43</td>
</tr>
<tr>
<td>More disruption</td>
<td>2.10</td>
</tr>
<tr>
<td>More coordination efforts</td>
<td>2.10</td>
</tr>
</tbody>
</table>
Survey Findings

- 21 response (of which 19 were analyzed)
- Agreement level (1~5 Likert scale)

<table>
<thead>
<tr>
<th>Description</th>
<th>Average rating</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LED lighting</td>
<td>TRAD lighting</td>
</tr>
<tr>
<td>Amount of light provided</td>
<td>3.70</td>
<td>2.69</td>
</tr>
<tr>
<td>Consistent and well distributed</td>
<td>3.50</td>
<td>2.38</td>
</tr>
<tr>
<td>Productive</td>
<td>3.75</td>
<td>2.94</td>
</tr>
<tr>
<td>Visually comfortable</td>
<td>3.84</td>
<td>2.73</td>
</tr>
<tr>
<td>Safe operation of work</td>
<td>4.00</td>
<td>3.20</td>
</tr>
<tr>
<td>Distracted from work</td>
<td>2.43</td>
<td>3.25</td>
</tr>
<tr>
<td>More disruption</td>
<td>2.10</td>
<td>3.06</td>
</tr>
<tr>
<td>More coordination efforts</td>
<td>2.10</td>
<td>3.13</td>
</tr>
</tbody>
</table>
Conclusion: Safety _ Cost _ Energy

• LED lighting is perceived as safer than traditional lighting
 – 5 FC OSHA requirement not met with traditional lighting
 – LED support immediate use of temp. lighting

• LED required additional pre-construction planning and higher installation cost

• With 5 FC, the cost of LED is comparable if not less

• However, cost saving might belong to different parties

Impact: Seattle City Light Rebate for LED projects
Made positive change on the job sites