COST MANAGEMENT

NWCCC MEETING April 28, 1999 SHERATON PORTLAND, OREGON

M. STEVEN FRANKLIN, CCE HARRIS GROUP, INC. PORTLAND, OREGON 503-228-7200 PURPOSE: To acquaint you with various cost management terms and techniques, to assist you in implementing them on your jobs.

FRAMEWORK: Cost management during various phases of a project (see "Phases of a project" chart).

Ś

_. .

PROJECT IDENTIFICATION PHASE

End-Product Units

Scale of Operations

Ratio or Factor Methods - Multiple of Equipment Cost

- Hand Factors

Physical Dimensions Method

Parametric Estimates

End-Product Units

Project A \$100mm for 100 widgets Project B 50 widgets => \$50mm

Scale of Operations

Ratio or Factor Methods - Multiple of Equipment Cost

- Hand Factors

Physical Dimensions Method

Parametric Estimates

End-Product Units

Scale of Operations

\$100mm * (50/100)^{.6} = \$66mm

Ratio or Factor Methods

- Multiple of Equipment Cost

- Hand Factors

Physical Dimensions Method

Parametric Estimates

End-Product Units

Scale of Operations

Ratio or Factor Methods

- Multiple of Equipment Cost

1.5 * EQ\$ self-contained 6.0 * EQ\$ small parts

- Hand Factors

Physical Dimensions Method

Parametric Estimates

End-Product Units

Scale of Operations

Ratio or Factor Methods - Multiple of Equipment Cost

- Hand Factors

Physical Dimensions Method

Historical costs per area, volume, length, etc.

Parametric Estimates

End-Product Units

Scale of Operations

Ratio or Factor Methods - Multiple of Equipment Cost

- Hand Factors

Physical Dimensions Method

End-Product Units

Scale of Operations

Ratio or Factor Methods

- Multiple of Equipment Cost
- Hand Factors

Physical Dimensions Method

Parametric Estimates

Cost Indices Cost @ one <u>time</u> & <u>place</u> "Watchouts": technology, cycles, location, lag, averages Document how to use

Order of magnitude estimating Good results if: Defined process Skilled user

End-Product Units

Scale of Operations

Ratio or Factor Methods - Multiple of Equipment Cost

- Hand Factors

Physical Dimensions Method

Parametric Estimates

						Date	
	PR	ELIMINARY	PRODUCTION COST EST	м	Ву		
	Location:		Product(s):				
	Capital Investment:		Process:				
	Total		Nelson Index	CE Index			
	Less working capita	I	M&S Index		Annual Operating		
	Less salvage value		ENR Index:			Days:	
	Depreciable investment		Annual production:				
	Raw materials		Annual quantity	Unit cost	\$/year	\$/	
(1)		· · · · · · · · · · · · · · · · · · ·		**************************************			
(2)							
(3)							
(4)							
(5)			Gross raw material cost ((sum of lines 1 to	4):		
	Misc. credits and de	bits					
(6)						_	
(7)					<u> </u>		
(8)							
(9)			Total debit (credit) ((sum of lines 6 to	8):		
(10)			Net raw material c	ost (lines 5 + line	9):		
		.	0	••	• /		
	Direct expense	Unit	Quantity	Unit cost	\$/year	2/	
(11)	Steam	М ІЪ		· · · · · · · · · · · · · · · · · · ·			
(12)	Water ()	M gal		• <u></u>			
(13)	Water ()	M gal		· · · · · · · · · · · · · · · · · · ·			
(14)	Electricity	kW-hr		· · · · · · · · · · · · · · · · · · ·			
(15)	Fuel ()				 ,	<u></u>	
(16)	ruei ()			•			

(17) Labor (18) Supervision (19) Maintenance (20) Factory supplies (21) Indirect overhead . (22) Payroll overhead (23) Laboratory (24) Contingencies Total direct conversion cost (sum of lines 11 to 24):___ (25) Indirect expense (26) Depreciation (27) Real estate taxes & insurance . (28) Depletion allowances (29) Amortization (30) Total indirect conversion cost (sum of lines 26 to 29):----(31)Total conversion cost (line 25 + line 30): ____ ____ (32) Total operating cost (line 31 + line 10):____ (33) Packing & shipping expense (34) TOTAL COST FOR PLANT (line 32 + line 33):_____

l : G

37 (12)

1

ì

NEW PRODUCT EVALUATION

i

.

Given: New product in the electronic industry

Investment:	70 units 5-year life Straight Line Depreciation
Sales Potential:	7 times the investment or approximately 500 units
Cost (variable):	45% to 55% to sales
Income Taxes:	50%
Cost of Capital:	20%

Year	0	1	2	3	4	5	TOTALS
Sales		50.0	71.3	9 0.0	127.5	160.00	498.8
Variable Expense Fixed Expense		27.5 14.0	39.2 14.0	49.5 14.0	58.7 14.0	73.6 14.0	248.5 70.0
Total Expense		41.5	53.2	63.5	72.7	87.6	318.5
Taxable Balance Tax at 50%		8.5 4.3	18.1 9.0	26.5 13.3	54.8 27.4	72.4 36.2	180.3 90.2
Balance A.T.		4.2	9.1	13.2	27.4	36.2	90.1
Plus: Depreciation		14.0	14.0	14.0	14.0	14.0	70.0
Less: Investment	70						(70.0)
Cash Flow	(70)	18.2	23 .1	27.2	41.4	50.2	90.1

Return on Investment = 29%

Net present value at 20% cost of capital = 17.1

Notes:

PROJECT PLANNING PHASE

PARAMETER ESTIMATE

PROJECT DEFINITION/ENGINEERING

-	T(COST BRE WORK BRE R	OTAL PF AKDOV ANI EAKDOV ELATIO	ROJECT VN STR D WN STR NSHIP	UCTURE	
	NORSET	DIRECTS			
PHASES	(1)	Labor		Material	Equipment
Conceptual Engineering	\$	WH	\$	-\$	\$
Detailed Engineering	\$	WH	\$	\$	\$
Procurement	\$	WH	\$	\$	\$
Construction	\$	WH	\$	\$	\$
Startup	\$	WH	\$	\$	\$
Other (2)	\$				
Legend: The COST BREAKDOWN STRUCTURE (CBS) is composed of all elements in the matrix for which dollars (\$) are budgeted. The total dollar value of all of these elements equals the project budget.					
The WORK BREAKDOWN STRUCTURE (WBS) is composed of those direct labor elements in the matrix for which work-hours (WH) are budgeted and lend themselves to work progress measurement.					
Footnotes: 1. Supervision above first level, staff, facilities, supplies and ser travel, etc.			lies and services,		
2. Home office overhead, contingency reserve, profit, etc.				etc.	

INTEGRATED PROJECT CONTROL SYSTEMS

 COST	FINANCIAL
Pareto's law	Receipts
Labor cost	Expenditures
Productivity	Payments
Worker hours	Taxes
Quantity control	Capitalization
Commitments	

.

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

maximize concurrent construction

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

> maximize concurrent construction minimize rework

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"
"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

> maximize concurrent construction minimize rework increase productivity decrease construction equipment costs design for less costly materials & less waste startup & construction drive engineering & procurement emphasize standardization & repetition use off-the-shelf materials & equipment simplify promote accessibility realistic specifications minimize unscheduled activities incorporate flexibility for field managers work when & where it is most efficient proactive attention, NOT just "review" team effort by owner, engineer, constructor & operator

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

> maximize concurrent construction minimize rework increase productivity decrease construction equipment costs design for less costly materials & less waste startup & construction drive engineering & procurement emphasize standardization & repetition use off-the-shelf materials & equipment simplify promote accessibility realistic specifications minimize unscheduled activities incorporate flexibility for field managers work when & where it is most efficient proactive attention, NOT just "review"

team effort by owner, engineer, constructor & operator

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

> maximize concurrent construction minimize rework increase productivity decrease construction equipment costs design for less costly materials & less waste startup & construction drive engineering & procurement emphasize standardization & repetition use off-the-shelf materials & equipment simplify promote accessibility realistic specifications minimize unscheduled activities incorporate flexibility for field managers work when & where it is most efficient proactive attention, NOT just "review"

team effort by owner, engineer, constructor & operator

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

> maximize concurrent construction minimize rework increase productivity decrease construction equipment costs design for less costly materials & less waste startup & construction drive engineering & procurement emphasize standardization & repetition use off-the-shelf materials & equipment simplify promote accessibility realistic specifications minimize unscheduled activities incorporate flexibility for field managers work when & where it is most efficient proactive attention, NOT just "review" team effort by owner, engineer, constructor & operator

"the optimum use of construction knowledge and experience in planning, design, procurement, and field operations to achieve overall project objectives"

> maximize concurrent construction minimize rework increase productivity decrease construction equipment costs design for less costly materials & less waste startup & construction drive engineering & procurement emphasize standardization & repetition use off-the-shelf materials & equipment simplify promote accessibility realistic specifications minimize unscheduled activities incorporate flexibility for field managers work when & where it is most efficient proactive attention, NOT just "review" team effort by owner, engineer, constructor & operator

Review the documents

Review the documents

Prepare the summary

Review the documents

Prepare the summary

Prepare bid file

Review the documents

Prepare the summary

Prepare bid file

Prepare for takeoffs (forms, wage rates,,,)

Site visit

Quantity takeoff of work items "in sequence"

Costing - hours, \$

Sources

Construction equipment

Subcontracts

Indirects - General Conditions, Overhead

Alternates

Allowances

Markups - Contingency, Profit

Tabulate

Check & Review

Review the documents Prepare the summary Prepare bid file

Prepare for takeoffs (forms, wage rates,,,)

Site visit

Quantity takeoff of work items "in sequence"

Costing - hours, \$

Sources

Construction equipment

Subcontracts

Indirects - General Conditions, Overhead

Alternates

Allowances

Markups - Contingency, Profit

Tabulate

Check & Review

Review the documents

Prepare the summary

Prepare bid file

Prepare for takeoffs (forms, wage rates,,,)

Site visit

Quantity takeoff of work items "in sequence"

Costing - hours, \$

Sources

Construction equipment

Subcontracts

Indirects - General Conditions, Overhead

Alternates

Allowances

Markups - Contingency, Profit

Tabulate

Check & Review

Review the documents

Prepare the summary

Prepare bid file

Prepare for takeoffs (forms, wage rates,,,)

Site visit

Quantity takeoff of work items "in sequence"

Costing - hours, \$

Sources

Construction equipment

Subcontracts

Indirects - General Conditions, Overhead

Alternates

Allowances

Markups - Contingency, Profit

Tabulate

Check & Review

Review the documents

Prepare the summary

Prepare bid file

Prepare for takeoffs (forms, wage rates,,,)

Site visit

Quantity takeoff of work items "in sequence"

Costing - hours, \$

Sources

Construction equipment

Subcontracts Indirects - General Conditions, Overhead Alternates Allowances Markups - Contingency, Profit Tabulate Check & Review Cuts/Adds

Review the documents

Prepare the summary

Prepare bid file

Prepare for takeoffs (forms, wage rates,,,)

Site visit

Quantity takeoff of work items "in sequence"

Costing - hours, \$

Sources

Construction equipment

Subcontracts

Indirects - General Conditions, Overhead Alternates Allowances Markups - Contingency, Profit Tabulate Check & Review

Review the documents

Prepare the summary

Prepare bid file

Prepare for takeoffs (forms, wage rates,,,)

Site visit

Quantity takeoff of work items "in sequence"

Costing - hours, \$

Sources

Construction equipment

Subcontracts

Indirects - General Conditions, Overhead

Alternates

Allowances

Markups - Contingency, Profit

Tabulate

Check & Review

Forecasting during Design

Purchases

"Best guess" quantities

CONSTRUCTION PHASE

Work Measurement

Based on WBS

Methods: Units completed Milestones Start / finish Opinion Cost ratio Weighted value equivalent units

Monthly Quantity Report

control Acco	unt Baseline			Project							
Account Co		Description		Serv		This Pe	riod To Date				
		1100	Latest	Week Ending							
Weight	ACUVRY		Estimate	1/6	1/13	1/20	1/27		<u></u>	+	
0.25	Large Hangers	EA	100	5 5	15 20	35	50				
0.30	Large Pipe	UF	2000				50 50			<u></u>	
0.10	Large Valves	EA	10							<u> </u>	
0.15	Large Pipe Weld	EA	150							<u> </u>	
0.20	Small Pipe	UF	1500		ļ						
		_	1				ļ				
					<u> </u>					<u></u>	
			<u> </u>							+	
Total Control 1.00	Control Nam Large Pipe	UM	Control Quantity 2000	2 2	75 100	75 175	90 285				
L	_ <u>_</u>		Field Engin	1961							

Control Account for Service Water Piping

iontrol Acco	ount Baseline					Project									(
Account C	x 40 0 0 0 0	Description			S	Serv	vice	Wa	ter	Pip	ing							Tot	al Contro W-H 3000	1
Weight	Activity	U/M	Later	et ete	D	1	F	M	A	1985 M	J	J	A	8		0	N	19 D	•	
0.25	Large Hangers	EA	10	0										-						
0.30	Large Pipe	UF	200	0		•••									T					
0.10	Large Valves	EA	1	0																
0.15	Large Pipe Weld	EA	15	0																ĺ
0.20	Small Pipe	UF	150	0			******							-						
			ABC	1234]••••											► KK	R3862			
															'I					
			EFG	7234]									i		+ EY	W4403			
iotal Control	Control Item	U/M LF	City. 2000	₩Н		380	660	510	580	680	230	"Iotal								
1.00				w-H		380	1040	1550	2110	2770	3000	umulath								
				*		13	35	52	70	92	100		i							

t

			Total	Quantity	Budget	Earned
Code	Accounts	U/M	quantity	To-Date	W-H	W-H
0811	Forms	SM	500	500	5000	
0812	Resteel	CWT	10	9	1000	
0813	Place & finish	СМ	1000	750	10000	
0810	SLABS @ GRADE	XXX	XXX	XXX		
0821	Forms	SM	550	55	6000	
0822	Resteel	CWT	10	2	1000	
0823	Place & finish	СМ	2500	0	15000	
0820	ELEVATED SLABS	XXX	XXX	XXX		
0800	CONCRETE	XXX	XXX	XXX		

			Total	Quantity	Budget	Earned
Code	Accounts	U/M	quantity	To-Date	W-H	W-H
0811	Forms	SM	500	500	5000	5000
0812	Resteel	CWT	10	9	1000	
0813	Place & finish	CM	1000	750	10000	
0810	SLABS @ GRADE	XXX	XXX	XXX		
0821	Forms	SM	550	55	6000	
0822	Resteel	CWT	10	2	1000	
0823	Place & finish	CM	2500	0	15000	
0820	ELEVATED SLABS	XXX	XXX	XXX		
0800	CONCRETE	XXX	XXX	XXX		

			Total	Quantity	Budget	Earned
Code	Accounts	U/M	quantity	To-Date	W-H	W-H
0811	Forms	SM	500	500	5000	5000
0812	Resteel	CWT	10	9	1000	900
0813	Place & finish	CM	1000	750	10000	
0810	SLABS @ GRADE	XXX	XXX	XXX		
0821	Forms	SM	550	55	6000	
0822	Resteel	CWT	10	2	1000	
0823	Place & finish	CM	2500	0	15000	
0820	ELEVATED SLABS	XXX	XXX	XXX		
0800	CONCRETE	XXX	XXX	XXX		

			Total	Quantity	Budget	Earned
Code	Accounts	U/M	quantity	To-Date	W-H	W-H
0811	Forms	SM	500	500	5000	5000
0812	Resteel	CWT	10	9	1000	900
0813	Place & finish	СМ	1000	750	10000	7500
0810	SLABS @ GRADE	XXX	XXX	XXX		
0821	Forms	SM	550	55	6000	
0822	Resteel	CWT	10	2	1000	
0823	Place & finish	CM	2500	0	15000	
0820	ELEVATED SLABS	XXX	XXX	XXX		
0800	CONCRETE	XXX	XXX	XXX		

			Total	Quantity	Budget	Earned
Code	Accounts	U/M	quantity	To-Date	W-H	W-H
0811	Forms	SM	500	500	5000	5000
0812	Resteel	CWT	10	9	1000	900
0813	Place & finish	CM	1000	750	10000	7500
0810	SLABS @ GRADE	XXX	XXX	XXX		13400
0821	Forms	SM	550	55	6000	
0822	Resteel	CWT	10	2	1000	
0823	Place & finish	CM	2500	0	15000	
0820	ELEVATED SLABS	XXX	XXX	XXX		
0800	CONCRETE	XXX	XXX	XXX		

			Total	Quantity	Budget	Earned
Code	Accounts	U/M	quantity	To-Date	W-H	W-H
0811	Forms	SM	500	500	5000	5000
0812	Resteel	CWT	10	9	1000	900
0813	Place & finish	CM	1000	750	10000	7500
0810	SLABS @ GRADE	XXX	XXX	XXX		13400
0821	Forms	SM	550	55	6000	600
0822	Resteel	CWT	10	2	1000	
0823	Place & finish	CM	2500	0	15000	
0820	ELEVATED SLABS	XXX	XXX	XXX		
0800	CONCRETE	XXX	XXX	XXX		
			Total	Quantity	Budget	Earned
------	----------------	-----	----------	----------	--------	--------
Code	Accounts	U/M	quantity	To-Date	W-H	W-H
0811	Forms	SM	500	500	5000	5000
0812	Resteel	CWT	10	9	1000	900
0813	Place & finish	CM	1000	750	10000	7500
0810	SLABS @ GRADE	XXX	XXX	XXX		13400
0821	Forms	SM	550	55	6000	600
0822	Resteel	CWT	10	2	1000	200
0823	Place & finish	CM	2500	0	15000	
0820	ELEVATED SLABS	XXX	XXX	XXX		
0800	CONCRETE	XXX	XXX	XXX		

			Total	Quantity	Budget	Earned
Code	Accounts	U/M	quantity	To-Date	W-H	W-H
0811	Forms	SM	500	500	5000	5000
0812	Resteel	CWT	10	9	1000	900
0813	Place & finish	CM	1000	750	10000	7500
0810	SLABS @ GRADE	XXX	XXX	XXX		13400
0821	Forms	SM	550	55	6000	600
0822	Resteel	CWT	10	2	1000	200
0823	Place & finish	СМ	2500	0	15000	0
0820	ELEVATED SLABS	XXX	XXX	XXX		
0800	CONCRETE	XXX	XXX	XXX		

			Total	Quantity	Budget	Earned
Code	Accounts	U/M	quantity	To-Date	W-H	W-H
0811	Forms	SM	500	500	5000	5000
0812	Resteel	CWT	10	9	1000	900
0813	Place & finish	СМ	1000	750	10000	7500
0810	SLABS @ GRADE	XXX	XXX	XXX		13400
0821	Forms	SM	550	55	6000	600
0822	Resteel	CWT	10	2	1000	200
0823	Place & finish	СМ	2500	0	15000	0
0820	ELEVATED SLABS	XXX	XXX	XXX		800
0800	CONCRETE	XXX	XXX	XXX		

			Total	Quantity	Budget	Earned
Code	Accounts	U/M	quantity	To-Date	W-H	W-H
0811	Forms	SM	500	500	5000	5000
0812	Resteel	CWT	10	9	1000	900
0813	Place & finish	CM	1000	750	10000	7500
0810	SLABS @ GRADE	XXX	XXX	XXX		13400
0821	Forms	SM	550	55	6000	600
0822	Resteel	CWT	10	2	1000	200
0823	Place & finish	CM	2500	0	15000	0
0820	ELEVATED SLABS	XXX	XXX	XXX		800
0800	CONCRETE	XXX	XXX	XXX		14200

You have summarized all control accounts in area A of a project to the end of the reporting period. You note that you had scheduled 28,000 work hours, had earned 26,000 work hours and actually paid for 25,000 work hours. Analyze the cost and schedule status in area A at the end of the reporting period.

BCWS BCWP ACWP

BCWS	28000
BCWP	26000
ACWP	25000

SV = BCWP-BCW	28000	BCWS
SPI = BCWP/BCW	26000	BCWP
CV = BCWP-ACW	25000	ACWP
CPI = BCWP/ACW		

BCWS	28000	SV = BCWP-BCWS	-2000
BCWP	26000	SPI = BCWP/BCWS	0.93
ACWP	25000	CV = BCWP-ACWP	1000
		CPI = BCWP/ACWP	1.04

In planning and budgeting a fixed price project, a given work package was estimated to include 200 units of work. Estimators further utilized a unit rate of 4 work hours per unit of work so budgeted for 800 work hours in this account. In the field, it was subsequently determined that there were really 240 units of work to be performed. This was strictly an estimating error and, with no contingency fund available, the budget remained at 800 work hours. At the end of the latest reporting period, work was 50% complete (120 units) and 432 work hours had been paid for. Is this package overrunning or underrunning cost? Is productivity better or worse than planned?

In planning and budgeting a fixed price project, a given work package was estimated to include 200 units of work. Estimators further utilized a unit rate of 4 work hours per unit of work so budgeted for 800 work hours in this account. In the field, it was subsequently determined that there were really 240 units of work to be performed. This was strictly an estimating error and, with no contingency fund available, the budget remained at 800 work hours. At the end of the latest reporting period, work was 50% complete (120 units) and 432 work hours had been paid for. Is this package overrunning or underrunning cost? Is productivity better or worse than planned?

Budget To-date To-go Total Units W-H W-H/unit

In planning and budgeting a fixed price project, a given work package was estimated to include 200 units of work. Estimators further utilized a unit rate of 4 work hours per unit of work so budgeted for 800 work hours in this account. In the field, it was subsequently determined that there were really 240 units of work to be performed. This was strictly an estimating error and, with no contingency fund available, the budget remained at 800 work hours. At the end of the latest reporting period, work was 50% complete (120 units) and 432 work hours had been paid for. Is this package overrunning or underrunning cost? Is productivity better or worse than planned?

	Budget	To-date	To-go	Total
Units	200	120	120	240
W-H	800	432		
W-H/unit	4	3.6	0	0

In planning and budgeting a fixed price project, a given work package was estimated to include 200 units of work. Estimators further utilized a unit rate of 4 work hours per unit of work so budgeted for 800 work hours in this account. In the field, it was subsequently determined that there were really 240 units of work to be performed. This was strictly an estimating error and, with no contingency fund available, the budget remained at 800 work hours. At the end of the latest reporting period, work was 50% complete (120 units) and 432 work hours had been paid for. Is this package overrunning or underrunning cost? Is productivity better or worse than planned?

Option #1 - remainder at budget

	Budget	To-date	To-go	Total
Units	200	120	120	240
W-H	800	432	480	912
W-H/unit	4	3.6	4	3.8

In planning and budgeting a fixed price project, a given work package was estimated to include 200 units of work. Estimators further utilized a unit rate of 4 work hours per unit of work so budgeted for 800 work hours in this account. In the field, it was subsequently determined that there were really 240 units of work to be performed. This was strictly an estimating error and, with no contingency fund available, the budget remained at 800 work hours. At the end of the latest reporting period, work was 50% complete (120 units) and 432 work hours had been paid for. Is this package overrunning or underrunning cost? Is productivity better or worse than planned?

Option #2 - remainder at to-date

	Budget	To-date	To-go	Total
Units	200	120	120	240
W-H	800	432	432	864
W-H/unit	4	3.6	3.6	3.6

In planning and budgeting a fixed price project, a given work package was estimated to include 200 units of work. Estimators further utilized a unit rate of 4 work hours per unit of work so budgeted for 800 work hours in this account. In the field, it was subsequently determined that there were really 240 units of work to be performed. This was strictly an estimating error and, with no contingency fund available, the budget remained at 800 work hours. At the end of the latest reporting period, work was 50% complete (120 units) and 432 work hours had been paid for. Is this package overrunning or underrunning cost? Is productivity better or worse than planned?

240

800

3.6 **3.067 3.33**

Option #3 - curve fit Budget To-date To-go Total 120 Units 200 120 W-H 800 432 368

4

W-H/unit

In planning and budgeting a fixed price project, a given work package was estimated to include 200 units of work. Estimators further utilized a unit rate of 4 work hours per unit of work so budgeted for 800 work hours in this account. In the field, it was subsequently determined that there were really 240 units of work to be performed. This was strictly an estimating error and, with no contingency fund available, the budget remained at 800 work hours. At the end of the latest reporting period, work was 50% complete (120 units) and 432 work hours had been paid for. Is this package overrunning or underrunning cost?

CWH (credit work hours) = budget rate * units completed

PI (Performance Index) = CWH / AWH

In planning and budgeting a fixed price project, a given work package was estimated to include 200 units of work. Estimators further utilized a unit rate of 4 work hours per unit of work so budgeted for 800 work hours in this account. In the field, it was subsequently determined that there were really 240 units of work to be performed. This was strictly an estimating error and, with no contingency fund available, the budget remained at 800 work hours. At the end of the latest reporting period, work was 50% complete (120 units) and 432 work hours had been paid for. Is this package overrunning or underrunning cost?

CWH (credit work hours) = budget rate * units completed = 4 * 120 = 480 PI (Performance Index) = CWH / AWH = 480 / 432 = 1.11

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original Approved Approved Current Period To-date budget transfers changes budget actuals actuals To-go Forecast

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance

Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original A budget t

Approved Approved transfers changes

Current budget Period actuals

To-date actuals

als

To-go

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping

Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original / budget t

Approved Approved transfers changes

Current budget Period actuals

To-date actuals

als

To-go

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target

Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original / budget t

Approved Approved transfers changes

Current budget Period actuals

To-date actuals

ls To-go

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter

Earned value cumulative

HYBRID SYSTEM

Original budget

Approved Approved transfers changes

Current budget Period actuals

To-date actuals

To-go

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter

Earned value cumulative

HYBRID SYSTEM

Original budget

Approved Approved transfers changes

Current budget Period actuals

To-date actuals

To-go F

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original budget

Approved Approved transfers changes

Current budget Period actuals

To-date actuals

lals

To-go

VARIABLE

Directly evaluate productivity

More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original budget

Approved Approved transfers changes

Current budget

Period actuals

To-date actuals

To-go

VARIABLE

Directly evaluate productivity More database management

Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original budget

Approved Approved transfers changes

Current budget

Period actuals

To-date actuals

To-go

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities

Real budgets are unit rates No budget constraint incentive Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original A budget ti

Approved Approved transfers changes

Current budget Period actuals

To-date actuals

als

To-go

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates

No budget constraint incentive Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original A budget tr

Approved Approved transfers changes

Current budget Period actuals

To-date actuals

als

To-go

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive

Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original budget

Approved Approved transfers changes

Current budget

Period actuals

To-date actuals

To-go

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget

Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original budget

Approved Approved transfers changes

Current budget

Period actuals

To-date

actuals

To-go

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget **Rework hours shown separately**

Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original budget

Approved Approved transfers changes

Current budget

Period actuals

To-date actuals

To-go

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget **Rework hours shown separately** Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original budget transfers

Approved Approved changes

Current budget

Period actuals To-date

actuals

To-go

VARIABLE

Directly evaluate productivity More database management Varies directly with quantities Real budgets are unit rates No budget constraint incentive Earned value changes with budget Rework hours shown separately Budget must be kept current

FIXED

Directly evaluate cost performance Simplified bookkeeping Constant target Performance data may be distorted Incentives to work smarter Earned value cumulative

HYBRID SYSTEM

Original Approved Approved Current Period To-date budget transfers changes budget actuals actuals To-go Forecast

REPORTING

9-1 10-1 11-1 12-1 1-1 WORKHOURS 2-1 3-1 4-1 5-1 6-1 7-1 8-1 2-1 3-1 4-1 502 P 0 16 49 49 100 0.8% Potable Water -----64688 74 A 0 4 30 52 66 86 19085 Ρ . 18 98 100 29.7% Steam & Condensate . 40 87 2407 P 0 8 14 22 100 Air & Vecuum 3.8% A 6587 P 18 50 85 100 Ô 10.2% Process Liquors A P 0.17 64 100 2995 60 4.7% Deserated B.F.W. ALERTIN 34 . 0 8 11 31 45 66 83 92 100 Oil, Chemicals, Vents, 25330 P 96 39.4% Milwater & Misc. A 100 P 7362 11.4% 90 Contingency . 80 P 70 Â 80 P 50 A 40 MARYNE P 30 . 20 Ρ 10 A Salesanases . 0 P A 96 96 100 33 51 66 12 64268 Ρ 2 .5 1 8 21 100% Totals ----A LEGEND Planned remembers Actual

Monitoring Schedule

Cost and Schedule Performance Graph

Time

.

ł

Productivity Profile

. ЧВ3.,

Workhour Productivity Trend Chart

Building Structural Steel Erection

-

Figure 8

Suggested References:

The following is a list of reference books related to the topics of Cost Estimating:

1. Cost Engineer's Notebook, Association for the Advancement of Cost Engineering

2. Neil, Construction Cost Estimating for Project Control, Prentice-Hall, Inc.

3. Jelen and Black, Cost and Optimization Engineering, McGraw-Hill Book Co.

4. Humphreys, ed., Project and Cost Engineers' Handbook, Marcel Dekker, Inc.

5. Vernon, Realistic Cost Estimating for Manufacturing, Society of Manufacturing Engineers.

6. Ostwald, Cost Estimating for Engineering and Management, Prentice-Hall, Inc.

7. Guthrie, Process Plant Estimating, Evaluation & Control, Craftsman Book Co.

8. Lorensoni and Clark, Applied Cost Engineering, Marcel Dekker, Inc.

9. Humphreys and Katell, Basic Cost Engineering, Marcel Dekker, Inc.

10. Bent, Applied Cost and Schedule Control, Marcel Dekker, Inc.

11. Bauman, Fundamentals of Cost Engineering in the Chemical Industry, Reinhold Publishing Co.

12. The Building Estimator's Reference Book, Frank R. Walker CO.

13. Page, Cost Estimating for Pipelines and Marine Structures, Gulf Publishing Co.

14. Popper, Modern Cost Engineering Techniques, McGraw-Hill Book Co.

15. Land, Simplified Approach to Preliminary Cost Estimates, CHEMICAL ENGINEERING, June 1948

16. Hand, Estimating Capital Costs from Process Flow Sheets, AACE Cost Engineers Notebook.

17. From Flow Sheet to Cost Estimate, PETROLEUM REFINER, September 1958

18. US Parameter Costs, ENGINEERING NEWS-RECORD, December 17, 1987

19. Project Control for Construction, Report 6.5, Construction Industry Institute, September 1987

20. Skills & Knowledge of Cost Engineering, 2nd Edition, Association for the Advancement of Cost Engineering

The preceding pages are excerpted primarily from reference document #20 above.

Estimating Aids - Reference Materials

The following is an abbreviated list of reference materials which are available to the estimator:

- 1. Process Plant Construction Estimating Standards, Richardson Engineering Services, Inc.
- 2. Contractors' Equipment Cost Guide, Dataquest The Associated General Contractors of America (AGC)
- 3. The Building Estimator's Reference Book, Frank R. Walker, Co.
- 4. Means Building Construction Cost Data, R. S. Means Co.
- 5. Estimating Earthwork Quantities, Norseman Publishing Co.
- 6. Caterpillar Performance Handbook, Caterpillar, Inc.
- 7. Means Man-Hour Standards, R. S. Means Co.
- 8. Rental Rates & Specifications, Associate Equipment Distributors.
- 9 Rental Rate Blue Book, Dataquest The Dun & Bradstreet Corporation.
- 10. Index of the Cost of Industrial Building, Aberthaw Co.
- 11. Dow Historical Local Cost Indexes, F. W. Dodge Co.
- 12. Engineering News Record, McGraw-Hill Co.
- 13. U.S. Army Engineer's Contract Unit Price Index, U.S. Army Corps of Engineers.
- 14. Chemical Engineering Plant Cost Index, McGraw-Hill Co.
- 15. Bureau of Labor Statistics, U.S. Department of Labor.
- 16. Dodge Guide to Public Works and Heavy Construction Costs, F. W. Dodge Co
- 17. Societies and Organizations:

American Concrete Institute (ACI) American Institute of Architects (AIA) American Institute of Steel Construction (AISC) American National Standards Institute (ANSI) American Nuclear Society (ANS) American Society of Testing and Materials (ASTM) American Society of Mechanical Engineers (ASME) American Welding Society (AWS) Associated Builders and Contractors (ABC) Associated General Contractors of America (AGC) Construction Specification Institute (CSI) National Constructors Association (NCA) National Electrical Constructors Association (NEC/ Power Crane and Shovel Association (PCSA)