

- n Discuss the progress of the process industries in capital effectiveness
- **n** Explore primary drivers of project excellence
- n Bring data to some contentious issues

Basis for the Discussion

n Each year Independent Project Analysis (IPA) conducts about 600 project evaluations for the process industries:

- Ø oil (upstream and down)
- Ø chemicals
- Ø pharmaceuticals
- Ø minerals
- Ø consumer products
- Ø power

n We now have databases containing over 5000 major projects and 1400 small projects

Characteristics of the Databases

Data for each project are quite detailed: over 1500 variables describe the projects from inception to completion

All data were obtained through face-to-face interviews with the project teams and sponsors in addition to the documentation

All data are normalized to a common time and place and external factors are removed

We then develop statistical models to create indexes for cost, schedule, operability, etc.

Outline

Progress in capital effectiveness

b Keys to improvement

b The role of contracting strategies

Ø Is fixed-price best?

Ø Do incentives work?

Progress

The cost of facilities has improved by about 12 percent in real terms over the past 5 years

Execution schedules have improved nearly 30 percent over the past decade

Construction safety has improved dramatically

Operability has held steady

Cost Performance Is Improving

Schedules Are Improving 0.9 1

 IPA_2

Operability Shows No Change

Safety Performance is Improving

*Using all PES database projects authorized after 1992.

IPA

Top Quartile Performance Can Increase IRR by 5%

Elements of Capital Effectiveness

r:\ewm\wccc

Elements of Capital Effectiveness

Integrated Project Teams

Definition of an Integrated Project Team

- n An Integrated Project Team is a team of full or part-time representatives of the following areas (but are not limited to):
 - Ø Business
 - Ø Engineering
 - **Ø** Construction
 - Ø Maintenance
 - **Ø** Operations/Production
 - **Ø** Health and Safety
 - Ø Environmental (if needed)
 - **Ø** Contractor (if appropriate)
- n These representatives are identified prior to project authorization and have specific responsibilities that are defined and understood by all team members
- n These representatives have authority to make decisions for the function they are representing and provide functional input to the project manager.

Integrated Teams Result in Better FEL and Therefore Better Performance

Integrated Teams Even Help Projects With Poor FEL

IPA

Elements of Capital Effectiveness

r:\ewm\wccc

Components of Front-End Loading

FEL is Improving Slowly

FEL Index

63 r:\ewm\wccc

Better Front-End Loading Saves Money

Front-End Loading Score

Better Front-End Loading Saves Construction Time

Front-End Loading Score

Elements of Capital Effectiveness

The Value-Improving Practices

Project Phase

Which VIPs are Most Commonly Used

VIPs that Drive Cost Performance

*Using all PES database projects authorized after 1992

VIPs Use is Increasing

Lack of FEL Results in Changes

IPA

Few Projects Meet All Objectives

Why is Capital Effectiveness So Difficult?

n In capital intensive businesses, capital effectiveness is an avenue to success

- Ø low cost producers have some volume, margin, and market share control
- Ø cycles provide opportunities as well as headaches
- n Yet many commodity businesses waste large amount of capital, because...
 - work process is inadequate
 - accountability is poor
 - cross-functional cooperation is lacking

Elements of Capital Effectiveness

The Contracting Strategy Problem

- n There are strongly held, diametrically opposed beliefs about the relative merits of different contracting approaches
- n In general, these beliefs are unsupported by systematic data
- n The contracting problem is also confused by the inability of many to distinguish between
 - Ø predictability and
 - Ø effectiveness

Contract Approaches Examined

- n EPC Lump-sum: detailed engineering, procurement and construction performed on a fixed price basis by same firm or consortium
- n Reimbursable: all work performed on a cost-plus fee or cost-plus incentive fee basis
- n Mixed: engineering & procurement performed on a reimbursable basis with predominantly fixedprice construction
- n Results are controlled for definition; poorly defined EPC-lump sums have very large penalty

Contracting Strategy and Project Results

Contracting Strategy Results

- n EPC Lump-sum is on average significantly more expensive than average
- n Reimbursable engineering followed by any form of fixed price construction (the "mixed strategy") is the most cost-effective approach
- n Although Mixed strategy execution time is longer, the cycle time is shortest
- **n** EPC Lump-sum carries a heavy operability penalty
- n On average the Mixed strategy appears best and EPC lump-sum worst

Why are EPC Lump-sums more Costly?

- n This contract form seeks to shift risk to the contractor
- n Theory is that because contracts lead execution, they should be better able to control risk
- n However, contractors are not well-capitalized and cannot bear equity risks at low cost
- n Therefore, contractors will normally bid on a higher than 50/50 basis
- n The larger the project relative to contractor, the high the risk premium

The Role of Incentives

- n *Engineering incentives* were amounts paid to the engineering contractor according to a formula for results versus targets
- n *Construction incentives* were paid to the construction contractor
- n "Both" are projects in which incentives were provided to both the engineering and construction contractors or to a single EPC contractor for overall cost and schedule results
- n Too few contracts had *meaningful* provisions for operability incentives to be examined

Contract Incentives and Project Results (Non EPC-Lump Sum Only)

Conclusions about Incentives

- n The use of incentive contracting has no reliable effects on cost, execution time, or cycle time
- n Directionally the results are poorer rather than better with incentives
- n The use of incentives for engineering is strongly associated with *poorer* operability of facilities
- n This conclusion holds for all types of projects we have examined
- n The use of incentives as currently practiced should be reconsidered
- n Contractors are better at this than owners

If You Incentivize, Ask...

- n Exactly, whose behavior are you seeking to change? How will the change mechanism work?
- n Will engineers withhold good ideas unless their firm receives an incentive?
- n Are there ways that the incentive can be "gamed", e.g. high estimates?
- n Are there potential unintended consequences, e.g. managing to the incentives rather than the project?

