

The Knowledge Leader for Project Success

Owners • Contractors • Academics

Communicating the Value

Stephen P. Mulva, Ph.D. Associate Director, CII

> Northwest Construction Consumer Council (NWCCC) Communication Strategies to Improve Project Delivery

Tulalip Resort Casino & Conference Center, Marysville, Washington • October 23, 2013

INTRODUCTION QUESTION 1:

The 40% most profitable projects make _____% of an EPC contractor's total profits.

INTRODUCTION QUESTION 2:

Which role has the biggest impact on project schedule performance?

Α.	CEO	22.9%*			
Β.	Project Sponsor	21.7%*			
C.	Finance Manager	35.4%	l ĺ	\succ	Percent Variation Explained
D.	Contract/Legal Mgr.	11.8%*			
Ε.	Project Controls Mgr.	33.5%			N = 39
F.	Engineering Team Leads	33.1%			* Not Significant
G.	QA/QC Manager	29.5%			at $\rho > 0.1$

INTRODUCTION QUESTION 3:

What percentage of key business personnel are NOT involved in a project?

Experience is what you get when you didn't get what you wanted.

- Randy Pausch

Agenda

- Capital Projects should be a strategic weapon in the creation of benefits driving shareholder value.
- Today's business leaders perceive capital projects as a "necessary evil" – as risky and plagued by cost and schedule overruns that erode benefits.
- Construction Industry Institute (CII) identified the root causes of benefits subtraction as poor working relationships, dysfunctional team dynamics, and ineffective contract management.
- How CII is changing the notion of benchmarking in capital projects by measuring the "softer side" of project management and how this form of communication radically improves project outcomes.

BACKGROUND

CII Purpose

CII's purpose is to <u>measurably</u> improve the capital delivery process.

CII's Legacy of Improvement (TRIR Rate)

Trim Capital Spending by 25%

McKinsey & Company

"The management of capital investment has an enormous effect on profitability and competitiveness, yet few companies do it effectively. We believe that the use of evaluation tools, disciplined processes, and **best practices** can help companies trim capital spending by up to a quarter without reducing capacity or functionality - and improve their operating costs and revenues through **better investment** decisions."

National Research Council (2009)

- Advancing the Competitiveness and Efficiency of the U.S. Construction Industry
 - Opportunities for Breakthrough Improvements:
 - Widespread Use of Interoperable Technology Applications (BIM)
 - Improved Jobsite Efficiency (Effective Interfacing of People, Processes, Materials, Equipment and Information)
 - Greater Use of Prefabrication, Preassembly, Modularization, and Offsite Fabrication (PPMOF) Techniques and Processes
 - Innovative, Widespread Use of Demonstration Installations
 - Effective Performance Measurement to Drive Efficiency and Support Innovation

Whenever an individual or a business decides that success has been attained, progress stops.

– Thomas J. Watson

PROJECT PERFORMANCE PREDICTABILITY RESEARCH (IMPACT ON FINANCIAL RETURNS)

CII Owners' Capital Efficiency

(Ratio of Cash Flow (CFfOA) to Construction In Progress (CIP))

Correlation between Construction In Progress (CIP) and Cash Flow (CFfOA) for CII Owners

CII Owners' Weighted Average Cost of Capital (WACC)

The WACC is the minimum return that a company must earn on an existing asset base to satisfy its creditors, owners, and other providers of capital, or they will invest elsewhere.

Capital Project Performance - CII Owners

69.7% Projects Not Shown

Cash Flow for an "Average" Cll Owner Project

Cash Flow Diagram for an "Average" Cll Owner (Includes Forecast 2012 - 2016)

Source: Capital IQ Courtesy of McCombs School of Business, UT Austin

Scenario 1: High Cost and Schedule Growth

Scenario 2: Low Cost and Schedule Growth

Net Present Value (Forecast for 2012-2016)

Expected NPV = \$ 6.5 Billion

NPV Impact of Suggested P.M. Practices

	Practices	Expected NPV	Gain/Loss	Improvement	
CII Owners' Average		\$ 6.45 Billion	N/A	N/A	
Contract Mathed	Lump Sum	\$ 6.81 Billion	\$ 360 Million	5.5%	
Contract Method	Cost Reimbursable	\$ 5.50 Billion	- \$ 950 Million	-14.8%	
	Work w/ Partner Contractor	\$ 6.80 Billion	\$ 350 Million	5.3%	
Working Relationship	Work w/ Non-Partner Contractor	\$ 4.61 Billion	- \$ 1,840 Million	-28.5%	
וחסס	<=200	\$ 6.48 Billion	\$30 Million	0.5%	
	>200	\$ 6.10 Billion	- \$360 Million	-5.6%	
Diapping for Stortup	High Use	\$ 6.45 Billion	\$ 0 Million	0.0%	
	Low Use	\$ 6.23 Billion	- \$220 Million	-3.4%	

- Best Strategy to Maximize Expected NPV
 - Lump Sum Contract, Working with CII Contractor, PDRI<=200, and High Use of Planning for Startup

 $\sqrt{(\$360)^2 + (\$350)^2 + (\$30)^2 + (\$0)^2} = \$496$ Million

- Expected NPV can increase \$496 Million
- Expected NPV can decrease \$2,113 Million

QUESTION:

Cost Reimbursable is faster than Lump Sum EPC by how much? (assume \$250 MM project)

- A. 4 weeks C. 24 weeks
- B. 10 weeks D. 40 weeks

Procurement Involvement in FEP

Construction Industry Institute[®]

Analyzed by: BMM Team *Each project's cost was normalized to \$ 250 MM

Less than 100% I	FEP complete pric	or to F	Procu	ireme	ent sta	art (n	n=53 p	oroje	cts)																													20	: v			~
Overall		190) wee	ks			-																															33	V	ve		12
Weeks		5	i 10	15	20	25	30	35	40	45	50 5	56	0 65	70	75	80	85	90	95	100	105	110_1	15 12	20 12	25 130) 135	140	145	150	155	160 1	65 1	70 1	75 1	80 18	5 1	90 19	5 20	0 205	210	215	220 225
FEP		76 w	veeks																					T												T						
Design		T	1									85	weeks																									Т				
Procurement			1							1	02 wee	eks																_											1			
Construction				1																7	78 we	eks																				
Startup]																							T							22	2 wee	eks							
100% FEP compl Overall Weeks	lete prior to Procu	reme 225	entsta i weel	art (n: <s 15</s 	=97 p 20	rojec 25	20	35	40	45	50 5	5	0 65	70	75	80	85	90	95	100	105 /	110 1	15 13	20 13	25 12	1 125	140	145	150	155	160 1	165 1	70 1	75 1	80 19	5 1	90 10	5 204	n 205	210	215	220 225
FEP		62 14	veeks	13	20	23	30	33	40	٦J	50 5	5 0	0.05	70			- 35	30	35	100	103			12	5 13	133	140	143	130	133							30 13	5 20	203	210	213	220 223
Desian		02.1													91 w	e ks																				+		-	1			
Procurement		+	1								-					7		92 w f	eeks																	+	-	-	1			
Construction	1	1	1	<u> </u>							-	-				·		T							93 \	veek																
Startup		1	1															-			-		-													+			25 w	eeks		
				å	Lunnand		ld		ll.	d		l		L	J			d.	l	l		l			l		4d			l						l						
Weeks			10		20		30		40		50	6	0	70)	80		90		100		110	12	20	130)	140		150		160	1	70	1	80	1	90	20	0,	210		220 225
FEP	Less than 100%	76 w	veeks																					_	_											4		_	4			
	100% complete	62 w	veeks]														
	Loss than 100%	1	1					1				OF	wooks																													
Design	Less man 100%											60	weeks		01	ooke															-			_		+-			+			
	100% complete		1	l	L		L		L						91 W	CERS																								L		
	Less than 100%	1	1	[1	T	1	02 wee	eks		_																T		T	-		T			1	T		T	
Procurement	100% complete		+						\vdash									92 we	eks																	+			1			
	1	.1	.i	8			i			i		40		le	e	(S																						l		I		
Con et	Less than 100%		1														1	Π		7	78 we	eks										_										
Construction	100% complete	1	1													1									93 \	veeks																
				******			,																																			
Startun	Less than 100%]																	22	2 wee	eks							
Startup	100% complete		1	1							1					1	1	T	T						1											T			25 w	eeks		

Conclusion: Opportunity Exists To Improve

High expectations are the key to everything

- Sam Walton

ORGANIZATIONAL MODELING & SIMULATION

SimVision[®] Modeling and Simulation

Integration Elements

- Business Environment
- Work and Work Processes
- Organization Engineering
- Leadership and Governance
- Communication and Information Flow

Simulation

Predictions

- Schedule, Critical Path
- Cost (work, rework, wait, communication)
- Quality (product, process, integration, communication)
- Resources (workloads, backlogs, constraints, opportunities)
- · Finance (cash flow, ROI)

Organization Characteristics

Decision-Making Processes Communication Processes Matrix Behaviors and Culture SimVision® technology is based on over fifteen years of Stanford University research into the design factors and organization behaviors that shape team performance

Source: ePM, LLC (2006)

Offshore China Project Model

- Organizations
 - Owner (Green)
 - Contractor (Red)
 - Sub (Blue)
 - Other (Grey)
- Main Activities
 - Facilities
 - Responsibility
 - Coordination
 - Rework

Offshore China Project Simulation

 55% Critical Activities

Need to Focus on:

- Controlling
 Engineering
- Planning for
 Fabrication
- Planning for HUC

Duration

11 Months
 Longer than
 Anticipated

Offshore China PMO Model

Program Organization

- Integrated
 Program
 Management
 Organization
 (PMO)
- Personnel from ALL Companies

• Focus On:

- Reducing Project Overhead
- Decision-Making
- Improving
 Performance

Offshore China PMO Simulation

- 37% Critical Activities (Changed Critical Path)
- Shifted Focus Toward:
 - Project Sanction
 - FPSO EPC, Integration, HUC
 - □ Completion

Duration

2 Months
 Shorter than
 Anticipated

Offshore China Program Model

Projects Delayed

- □ Phase 1 Tie-In (6 Months)
- □ Remote Wellhead Platform (2 Months)

Offshore China Program Simulation

Improvement

□ 57% Increase in ROCE

□ 20% Schedule Reduction

Tolerable Risk Levels

It isn't what we know that gives us trouble, it's what we know that ain't so

- Will Rogers

5 Principles of Project Integration (first 3)

Organizational Engineering

- The organization is tailored to the work at hand
- Team members' skills and experiences are matched to task demands

Governance and Leadership

- Business and project objectives are aligned
- Roles and responsibilities are clearly understood
- Decision making processes are timely and certain
- Key Work Processes
 - The project work processes complement each other
 - Critical handoffs are identified and actively managed

5 Principles of Project Integration (cont'd)

- Communication and Information Flows
 - Communication culture is proactive
 - Communication is planned and not ad hoc
 - Information content and delivery is tailored to specific audiences
- Business and Execution Environment
 - Contracting strategy fits the business objectives
 - Sources of organizational noise are understood and mitigation strategies employed where appropriate

CII 10-10 PROGRAM AND PERFORMANCE ASSESSMENT CAMPAIGN

Motivation

- Senior Management Disconnect
- Need for Actionable Information
- Measures Roll Up, Down

Cll 10-10 Program

\$/BOED, \$/GSF, Capacity Efficiency Quality, Design Efficiency, Leading, HR

CII General Program

Budget Factor, Change Cost Growth, WH/LF Piping, Project TRIR, etc.

eneral Project Info	Performance	Practices	Engineering Productivity	Construction Productivity
Project Description	Budgeted & Actual Project Costs	Front End Planning	Instructions	Instructions
Project Information	Planned & Actual Project Schedule	Alignment	Engineering Team & Workhours	Concrete
Project Scope	Achieving Facility Capacity	Partnering	Concrete	Structural Steel
Project Management Team	Project Outcomes	Team Building	Structural Steel	Electrical-Part1
Union Site Construction Workforce	Work Hours & Safety Data	Project Delivery	Electrical	Electrical-Part2
Engineering Deliverables	Project Environment Impacts	Constructability	Piping	Piping
Contract Type & Alliance		Risk Assessment	Instrumentation	Instrumentation
		Change Management	Equipment - Part1	Equipment-Part1
		Zero Accident Techniques	Equipment - Part2	Equipment-Part2
		Benchmarking	Direct Hire/Contract/Off-Shore	Insulation
		Planning For Start Up		Scaffolding
		Technology Use		

CONStructi Industry Institute"	on Test General I General Performanc Report Date: 10/05/20	e Key Repo	n contractor									
	Proje	ct General	Information									
Company Name	Testco	Respon	ident Type (RT)		Conb	actor						
Project ID	CEC09219	Questo	onnaire Type (QT)		Gene	rai B	encha	narkir	ng (L	arge)		
Project Location	United States	Locatio	n Category (LC)		Dome	tstc				-	-	
Project Cost	USD\$ 91,849,000.00	Compa	ny involvement (CI	ŋ	Desig	in an	d Cor	istruc	t			
Sile Work Hours	4,000,000	Industr	y Group (10)		heav	/ indi	istna	1				
Overall Project Duration	988 Days	Project	Type (PT)		OI SI	ands	SAGI	D.				
Design thru Startup Duration	988 Days	Project	Nature (PN)		grass	root	5					
Midpoint of Construction	04/15/2007	Cost C	ategory (CC)		\$500	M - 5	1004	M				
	*	ley Report l	egend									
Asterisk (*) on the n value der	otes a small sample of project	s (between 1	0 & 20)	Coproc.com		1,00	P				539 L	2
	Gene	nal Pericini	ance - cost	1 1								
Metric		Project Score	CII Database Mean	Quartile	QT	LC	CI	IG	PT	PN	cc	
Project Cost Growth		0.031	0.010	03	1	1	1	1	all	1	1	
Delta Cost Growth		0.031	0.092	Q1	1	1	1	1	all	1	1	1
Project Budget Factor						-		-	-	-		1
Delta Budget Factor		0.970	0.950		~	1	~	\checkmark	all	1	1	1 1
Detail Engineering Cost Growth		0.970	0.950	03	~	1	1	1	all all	1	1	1 1 1
plan rubotend oppi group		0.970 0.030 0.026	0.950 0.063 0.068	03 02 02	> > >	111	>>>	> > >	all all all	111	111	1 1 1 1
Procurement Cost Growth		0.970 0.030 0.026 0.036	0.950 0.063 0.068 -0.040	03 02 02 03	>>>>	>>>>	>>>>	>>>>	all all all all	1111	111	1 1 1 1 1

c c c c c c c c

Y-Axis Metric Genera	al Performance	- v	Cost	Project Cost Growth			RESET 💽 🚒
X-Axis Metric Genera	al Performance	•	Management/Supervisi •	Management/Superv	sion	•	Select Range
Respondent	Vari	iables			Quartile Chart		
Oumar Contractor Both	Pro	ject Variat	Selections Capacities Achieved During Start.	up •	an a 🚺 an a 🚺	2019 🚺 1519	Respondent - Owner Comparisons
Project Priority		6 Design D 6 Design D 6 Modulario 8 Modulario 8 Modulario 8 Modulario 8 Modulario 8 Modulario	ne Hours ompletion Prior to Authorization propietion Prior to Construction cation hange up Phase Cost		0.4		Projest Priority - Cost
Project Location Component Types		kdual Core kdual Engl kdual Fron	Inution Phase Cost neering Phase Cost End Planning Phase Cost		olect Cost C		_
Project Driver Project Nature Project Delivery Method		Idual Proo Idual Char Total Actual	vernent Phase Cost ge Cost I Phoject Cost		-0.2		Variables
Contract Type Work Involvement		Equipment Direct Revio Complete a Engineering	Santa A Cost nd Acourate Engineering Delivers (Deliversibles Released Timely	ibles	-0.4	dian Q3 P90 Mi 1555 0.4925 0.55500 0.1	xx
	r C Den Sen	Induct Que Named Pro Direct Revo el Prestice Vedule Vari	elty Specifications Achieved opect Quality Specifications Achie & Hours #	ved	Cost Min:	Mac	Save Chart Only Save Chart With Info
					Year Min:	Max	Compute

21st Century Project Context

The "Hidden" Projects

"Drunkard's Walk" (Markov Chain)

"Famous" Construction Quotes

"Construction would be easy, if it weren't for all the people involved"

"When we pay for benchmarking, we typically tend to find the data being asked" _ Sanat Doshi

10-10 Questionnaires

- Practice-Based
 - Yes/No
 - − 5-point scales (strongly agree → strongly disagree)
- Phase-Based
 - Help for current projects
 - Answered as project nears phase completion
- Quantitative, yet simple to answer
- Research-based, empirically tested
- Paper- and Internet-Based (2013-2014)
- Examples...

FEP Questionnaire

The interfaces between project stakeholders were well-managed.

- A. Strongly Agree
- B. Agree
- C. Neutral
- D. Disagree
- E. Strongly Disagree

Input Metrics: Organizing, Leading

Engineering Questionnaire

The equipment procurement and vendor schedules were a significant challenge or problem for this project

- A. Strongly Agree
- B. Agree
- C. Neutral
- D. Disagree
- E. Strongly Disagree

Input Metrics: Planning, Controlling, Partnering & Supply Chain Management

Procurement Questionnaire

Preferred suppliers were used effectively to streamline the procurement process

- A. Strongly Agree
- B. Agree
- C. Neutral
- D. Disagree
- E. Strongly Disagree

Input Metrics: Planning, Controlling, Quality, and Partnering & Supply Chain Management (SCM)

Construction Questionnaire

The availability and competency of craft labor was adequate

- A. Strongly Agree
- B. Agree
- C. Neutral
- D. Disagree
- E. Strongly Disagree

Input Metrics: Planning, Controlling, Quality, HR and Safety

Start-Up Questionnaire

The project experienced an excessive number of project management team personnel changes

- A. Strongly Agree
- B. Agree
- C. Neutral
- D. Disagree
- E. Strongly Disagree

Input Metrics: Organizing, Leading, and Human Resources (HR)

Start-Up Questionnaire

- Which of the following statements characterize the decisions made by the manager(s) of this project? (please check all that apply)
 - Considered final and not revisited
 - Collaborative and inclusive
 - Made at the lowest appropriate level in the organization
 - Communicated promptly to the team
 - Made in a timely and effective manner
 - Consistent with the delegation of authority
- Input Measure: Leading

How Cll's 10-10 Program Works

Design Efficiency (DE)

- Project A Capacity: 2,600 tons/yr BOM: 1.78 RF $\frac{CAP_A}{RF_A} = 1,461 \ (DE)$ CII 10-10 Database $CAP_{\underline{B}}$ = 1,386 (DE) RF_B **Project B** Capacity: 1,150 tons/yr BOM: 0.83 RF
- CII Model Plant / CII
 Reference Project

10-10 Input Metrics

Leading

Quality n=25

- Simple
- Motivating
- Insightful

10-10 Outcome Metrics (6 of 10 Shown)

10-10 Integration, Diagnostics

• Phase-Based, Sector-Based, Attribute-Based

	List of CII Tools
1	Design Effectiveness Toolkit (64 Strategies)
2	17 Constructability Principles
3	eGuide for Materials Management
4	PEpC
5	Common Commodity Codes (?)
6	Product Integrity Concerns (video – no tool?)
7	Interim Product Database (IPD)
8	Industrial Engineering Techniques
9	Lean Principles in Construction (35 Principles & Sub-principles)
10	Planning for Startup SuPERTool
11	Activity Analysis
12	Rework Reduction
13	Crew Scheduling 'Look Up' Table
14	Best Practices Productivity Improvement Index (BPPII)
15	Voice of the Craft Worker (VOW) Tool
16	Attracting and Maintaining a Skilled Construction Workforce (75 Activities)?
17	Multiskilling Cost Model
18	Compass (Communications Project Assessment)Tool
19	Global Virtual Engineering Team (GVET) Planner
20	Project Priority Calculator – worthy of more investigation
21	Core Competency Toolkit (Owner/Contractor Work Structure Process Handbook)
22	Management of Virtual Team Checklist
23	Partnering Toolkit
24	Leader Selection Guide
25	Team Leadership Planner
26	Team Health Check
27	Trust Evaluation System (RT24)
28	ValueShare Tool
29	QMS Correlation Matrix
30	Zero Field Rework Opportunity Checklist
31	Value Management Process (VMP) Selection Tool
32	Small Projects Toolkit
33	Quality Performance Management System (QPMS) superceded by QMS Correlation Matrix
34	Work Packaging Execution Model
35	Cost/Schedule Tradeoff Tool (CSTT) – 23 techniques
36	Project Health Indicator (PHI) Tool
37	Indirect Construction Cost (IDCC) Checklist

38	Project Controls and Management Systems (PCMS) Participants Involved Tool (interfaces)
39	Project Controls and Management Systems (PCMS) Information Flow Tool (interfaces)
40	Predictive Tools Road Map (?)
41	Interactive Risk Register Tool (incl. Probabilistic Risk Analysis)
42	Contract Strategy Selection Tool (from C/R RT 260)
43	Equitable Risk Allocation (ERA) Tool
44	Project Delivery and Contract Strategy (PDCS) Selection Tool
45	International Project Risk Assessment (IPRA) Tool
46	Dispute Review Board (DRB) Implementation Guidelines
47	Disputes Potential Index (DPI)
48	(Commodity vs. Value-Added) Contractor Services Communication and Evaluation Tool
49	Single-Party Risk Assessment Worksheet
50	Two-Party Risk Assessment Worksheet
51	Contractor Compensation Strategies (31 flavors) Checklist
52	Construction Contract Change Clause Checklist (vol. I and II)
53	"Hot Button" Risks Checklist (incl. Contract Language Table)
54	Risk Management Model and Checklist
55	Active and Passive Safety Leading Indicators Checklist
56	Checklist for Sustainable Construction Job Sites
57	Design for Construction Safety Toolbox, Version 2.0
58	Workers' Compensation Contractor Checklist
59	Environmental Information Gathering Checklist
60	Good Environmental Practice Criteria for Construction Projects Checklist
61	Zero Injury Techniques Checklist
62	Safety Self-Assessment Instrument
63	Guidelines for Managing Subcontractor Safety
64	Safety Program Guidelines for Contractors and Subcontractors
65	Integration Opportunity Assessment Tool
66	BIM Project Execution Plan Template
67	LEVER Technology Prediction Tool (Productivity)
68	EPC Macro Model Logic Diagram for Impact of Process Change
69	D/B/B Macro Model Logic Diagram for Impact of Process Change
70	EPC Macro Model Activity List (Information Management)
71	Advanced Construction Technology Systems (ACTS) Database
72	Lessons Learned Self-Assessment Questionnaire
73	Security Rating Index Tool
74	FEP Alignment Thermometer
75	PDRI for Industrial
76	PDRI for Building
77	PDRI for Infrastructure

When you don't know where the bar should be, you're only going to do a disservice by putting it anywhere.

– Andries van Dam

Questions?

• How Do I Maximize Project Performance?

Resources

- www.10-10program.org
- CII Website
- Internet Surveys
 - Industrial (now)
 - Buildings (Oct.)
 - Infrastructure (Dec.)
- Stephen Mulva, Ph.D.
 - <u>smulva@cii.utexas.edu</u>
 - (512) 232-3013

PROGRAM RENEWAL

Background

- Owner's Capital Budgeting Process
 - Used to select projects for funding
 - Based on financial prioritization (NPV, ROR)
- Asset Development Processes (ADP's)
 - Track each project through its phases
 - Do not examine portfolio benefits
- Program Renewal
 - Links business and project leadership
 - Ensures that projects are 'built right'
 - Ensures that 'right' projects are 'built'

Program Management – A 'Strategic Fit'

 The coordinated management of a portfolio of projects to achieve a set of business objectives (CCTA 1995)

Texaco's ADP

BUSINESS ROADMAP FOR ASSET & VALUE INHANCEMENT

Benefits: Linking Business and Project Management (after Reiss 1996)

- Direct
 - Projects with direct benefits
- Enabling
 - Projects vital to the delivery of a whole range of benefits from other projects

Passenger

 Projects that can only add to benefits expected from other projects

Synergistic

 Projects which makes no (or only a small) contribution, unless combined into a program

Program Renewal

• The Program Continuum (after Pellegrinelli 1997)

- Initiation, Planning, Delivery, Renewal
- New 'class' of dynamically-benchmarked ADP's

Study and Findings

3 Large Building Program Owners

- 167 Combined Projects
- Executed Using Program Renewal
- Boeing 11% Project Development Cost Reduction

Program	No. Projects Completed	% Projects Cancelled	% Cost Improvement
1996 Restaurant	24	10.5%	12.1%
1997 Restaurant	44	29.0%	4.9%
1998 Restaurant	17	38.5%	10.4%
1999 Restaurant	23	30.0%	5.9%
2000 Restaurant	32	33.3%	15.5%
1998 Hotel	13	9.1%	10.5%
1998 Discount Retailer	14	0.0%	9.5%

CII BENCHMARKING

CII Benchmarking & Metrics (BM&M)

- 2,100 projects entered since 1995, valued at ~\$300 Billion
- Confidential
- Cost Effective
- Compelling, Focused Metrics
 - unique measures of CII Best Practices and productivity for engineering and construction
 - external performance benchmarks of safety, cost, schedule, change, and rework
- Unique Approach
- Experienced
 - Competent, Professional Staff

🗱 https://www.construction-institute.org/nextgen/datamining 🔎 👻 🖀 🗟 🖒 🗙 (\rightarrow) CII Data Miner **☆** ★ **Data Miner** PERFORMANCE ASSESSMENT SYSTEM Login as Stephen Mulva CII Home PAS Home Learn Create a Project View/Edit Projects Data Miner Mv Account Help | Logout ↓ Procurement Cost Growth Primary Metric General Performance ↓ Cost 4 RESET Metric Filter General Performance 4 Schedule 4 Project Schedule Growth 4 Select Range Respondent Variables ← Quartile Chart General Project Info Owner N =192 4th Q 3rd Q Comparison Display 2nd Q 1st Q Cost Contractor 0.4 Comparisons O Both Selections Industry Group - Heavy Industrial actual change cost \downarrow Project Priority 0.3 actual construction phase cost |Project Location actual engineering phase cost 0.2 Project Driver \downarrow actual front end planning phase cost Project Nature \downarrow actual procurement phase cost 0.1 Cost Growth Project Delivery Method |actual startup phase cost ↓ construction phase cost budget Contract Type 0 Variables contingency Work Involvement ↓ actual procurement phase cost: [5000000,100 direct rework cost Procurement -0.1 \uparrow Project Type direct rework hours 1 Heavy Industrial engineering phase cost budget -0.2 Chemical Manufacturing equipment cost Electrical (Generating) front end planning phase budget Environmental -0.3Metals Refining/Processing procurement phase cost budget Mining startup phase cost budget Respondent - Contractor -0.4 Tailing Natural Gas Processing tic Oil and Gas Exploration/Production total actual project cost -0.5 Oil Refining total project budget Oil Sands Mining/Extraction Using CII Database Min 01 Mean Median 03 Max Oil Sands SAGD -0.476 -0.120 -0.043 -0.040 0.027 0.303 Oil Sands Upgrading Cogeneration Project Selection Pulp and Paper Schedule Other Heavy Industrial Save Chart With Info Save Chart Only Work Hours and Safety 🚽 🗌 Light Industrial Capacity and Other Performance 🚽 📃 Building Practices Infrastructure Cost (in millions, 2011 dollars) Min: 0.0144648 Max: 52827.9 Compute Compute Voor His Ma 8:44 AM

68

0

▲ 📴 🕥 🛱 📶 🕩 8:44 AM