

The UW Capital Projects Office and NW Construction Consumer Council

Present:

"Changing Project Delivery at the UW through

Innovation, Integration, and Adoption of MC/CM and EC/CM"

PACCAR Hall, the Gordon Kloft Classroom

June 22, 2011

ermanson 🏴

Program Outline

Northwest Construction Consumer Council

Slide 2

Implementing COBie & Project Delivery Innovations - Part 1

• Eric Smith, Director of Major Projects, UW CPO

Integration of the Project Team – Part 2

- Will Dann, THA Architects
- Troy Bloedel, Lease Crutcher Lewis
- Steve Tatge, UW CPO

Case Study and Panel Discussion: MC/CM & EC/CM – Part 3

- James Thomas, GLUMAC
- Judi Ebmeyer, GLUMAC
- Len Klein, GLUMAC
- Dave Nehren, Hermanson
- Tim Nelson, Nelson Electric
- Brett Magnuson, UW CPO

GLUMAC engineers for a sustainable future Hermanson

Implementing COBie & Project Delivery Innovations - Part 1

Eric Smith, UW CPO, Director, MajorProjects Group

NELSON

Process

•Design-Build

•DBOM

•GC/CM

•IPD-ish

•Early Subs

•Design Assist

•Target Value Design

Facilities Mngmt

Innovation

Integration

Technology

•BIM

Laser Scan

•Tablet Computers

Thank you to our project partners!

W C C C Northwest Construction Consumer Council

Ben Hall/R & T: Inspirational Learning Moment

Idea in 2003 became a reality in 2006

Genesis to build a lab building competitive with the private market.

Became an inspiration and example of how process & technology can enable Innovation & Integration.

Process: DBOM

Started with Design-Build integrated Design & Construction.

Expand to O&M – Responsibility & accountability for design, quality, life cycle, etc.

Ben Hall/R & T: Inspirational Learning Moment

Technology: BIM 3D & 4D

BIM proved design assumptions to skeptical owner.

➤Enabled by DBOM process

BIM during construction.

Underground As-Builts eased utility agency concerns

➤4D improved planning and coordination

Logistics

Subcontractors

Safety

Northwest Construction Consumer Council

Slide 8

Ben Hall Images

Applying Technology to GC/CM

- GC/CM is UW primary method on major projects
- Trade coordination: First BIM use; now standard
- Other technologies
 - Laser scanning Tablet Computers
- On-site document posting and access

Slide 11

BIM in Trade Coordination

- William H. Foege Building
- Harborview Bond Program
- Health Sciences H-Wing
- Washington Dental Services Center for
- Early Childhood Oral Health
- UW Tacoma Joy and Tioga Library Buildings
- Clark Hall
- Denny Hall
- Johnson Hall
- Guggenheim Hall
- UW Tower Data Center
- PACCAR Hall
- Molecular Engineering
- Student Housing
- Health Sciences J-Wing
- UWMC Expansion

Combined view of Design Models

Structural Design Model

Design Model used for building sectional studies – North Section

Design Model used for mechanical coordination - Penthouse

MEP 3D Coordination at PACCAR

- 99% of beam penetrations were shop fabricated as a result of early coordination.
 - Estimated savings = \$120,000 242 penetrations added 127 modified size or location
- Building architecture preserved by maintaining ceiling heights and keeping MEP hidden despite a great deal of open structure. LMN Architects, structural teams, and the M/E design team attended meetings as needed and collaborated with Sellen to resolve issues early and avoid costly changes later in construction.

Balmer Hall 4D Modeling

- 4D Modeling was used to communicate which walls would remain and to illustrate excavation to the design team.
- 4D Modeling resulted in shoring being incorporated into the design prior to bidding.
- 4D modeling was used to identify conflicts between drilled piers and existing foundations and were incorporated into our bid instructions so that these

Northwest Construction Consumer Council

Trimble Unit

Trimbler's

Slide 21

Northwest Construction Consumer Council

Savery Hall As-Built

Savery Hall - Structural As-Built

Savery Hall - Structural As-Built

Slide 25

UW Denny Hall Laser-Scan Surveying

- 3D "Laser Scanning" Millions of points
 Sub-millimeter accuracy
 Capture photos and reflectance
- Preconstruction Verification of existing conditions/as-built
- Construction Utilize for BIM coordination in the field and O&M

Slide 26

UW Denny Hall Laser-Scan Surveying

UW Denny Hall Laser Scan revealed a number of discrepancies with as-built documentation.

UWMC Expansion Project

3D of the UWMC Expansion foundations "before"

UWMC Expansion Project

HSC J1/J2 Microbiology Renovation Digital Mockup

3D model resolved many constructability issues only possible through an iterative, digital process. The model turned into the fabrication drawings.

Northwest Construction Consumer Council

HSC J1/J2 Microbiology Renovation Digital Mock-up

Ruggedized Tablets in the Field:

- Safety
- Quality Control
- Punchlist
- Future BIM Integration

Slide 32

Electronic Plan Table

Photo shows the plan in the background, and a Window opened with an RFI that is linked via the plan view.

Slide 33

Northwest Construction Consumer Council

Northwest Construction Consumer Council

Electronic Posting in the Field

Design Assist/BIM Charrette – UWMC Expansion Project

Slide 35

Leve at the a set

UWMC Expansion Design Assist

nw

mvestment									
•	Net fee to Mechanical/Electrical Subs	\$ 190,000							
Re	eturn								
1	Finish 10 weeks early – direct construction savings	\$ 1,900,000							
•	Start revenue 10 weeks early – added UWMC Margin	\$ 3,500,000							
•	Change Orders avoided	\$ 300,000							
TC	TAL RETURN	\$5,700,000							
Re	turn on investment	\$ 30/\$1							

Slide 36

UW Bothell Phase 3: Pulling it all together

- Embracing IPD principles
- Form team early

GC/CM at design start

Early subcontractors – MC/CM and EC/CM

- Target Value Design
- Plan, design and build in 3D model
- Design assist
- Streamline process

BIM for Facility Management

"Design for Maintenance"

Courtesy of Birgitta Foster

Slide 39

Latest example...Relief Fan

"I have put in service request...to find a solution to meeting the relief needs of the building, perhaps another exhaust fan can be used....Please discontinue any Preventative Maintenance to this exhaust fan."

Levels of FM Engagement

- Link the BMS to the BIM models/O&M information
- Critical for post occupancy performance

- Software or method to link BIM models to O&M information
- Process to update as necessary
- Electronic project information (O&M, Warranties, CAD/BIM files, etc)
- Well thought out structure
- "Foundation" of FIM

Bridge to BMS (Building Management System)

Link O&M Information To BIM Model

Information Management

COBie case study

FACILITY SOLUTIONS

Foster School of Business Phase II

\$41.8M project cost; 63,000 GSF classroom/admin.

contractors

UNIVERSITY of WASHINGTON Construction Management

Slide 41

Northwest Construction Consumer Council

Our current O&M data transfer...

"Here's your building - good luck!"

Data is lost with each phase...

Slide 44

Less hunting for info, more wrench time

Studies have estimated waste due to O&M management at \$0.23/GSF/Year

UW has about 20M GSF...\$4.6M/year

Other studies indicate the cost may be higher still

The UW COBie Pilot

Project Phase	Contracting Phase	Information Captured	Case Study Scope		
Deguigement	Des susaria s	Space Program			
Requirement	Programming	Product Program			
		Early Design			
		Schematic Design			
	Documents	Coordinated Design			
Design		Design Reviews			
		Product Specifications			
	Specification	Product Discovery			
	Bidding	Bid Inquiries			
	Selection	Preparation and Submittal Review			
		Shop Drawings – – – – – – – – –			
		Install Products			
Construction	Installation	Inspect Products			
		Punch List			
		Capture Parts Data			
		Capture Warranty Data			
	Commissioning	Capture Maintenance Data			
		Capture Systems Data			

O&M Data Swim Lane Diagram- current state

EXHAUST FANS

IGH BAY

HIGH BAY.

ELECTRICAL ROOM

PARTS WASHER

WELDING BENCH

TOILET, JAN., COMM

OFFICE / KITCHEN

HIGH BAY

RECESSED MAINT AREA

TAG

EF-1

EF-2

EF-3

EF-4 EF-5

<u>EF-6</u>

EF-7

<u>EF-8</u>

EF-9

BASIS OF DESIGN

N16

MAKE

GREENHECK

GREENHECK

GREENHECK

GREENHECK

NEDERMAN

NEDERMAN

GREENHECK

GREENHECK

GREENHECK

* ALL 208 VOLT MOTORS SHALL BE 200 VOLT NAMEPLATE

Slide 47

The COBie Template

									-							
				A	В			C	D	E	F	G	Н		J	<u> </u>
			1	ComponentID	SpaceID			RegisterID	ExternalSystemName	ExternalNameID	ComponentName	ComponentDescription	CreatedBy	CreatedDate	CreatedTime	ReplacesID
			39	38 1	1,100	54, HVAC	Syste	m Components and Equipment			RH-21	Radiant Heater	3,Reynolds,Tim,CB Engineers	16-Apr-2008	14:16	Componen
			40	39 9	9,0	54, HVAC	Syste	m Components and Equipment			EF-1	Exhaust Fan	3,Reynolds,Tim,CB Engineers	16-Apr-2008	14:16	Componen
			41	40 9	3,0	54, HVAC	Syste	m Components and Equipment		1	EF-Z	Exhaust Fan	3,Reynolds,Tim,CB Engineers	16-Apr-2008	14:16	Componen
			42	41 5	5,103	54, HVAC	Syste	m Components and Equipment 🛛 🥒		1	EF-3	Exhaust Fan	3,Reynolds,Tim,CB Engineers	16-Apr-2008	14:16	Componen
			43	42 3	3,101	54, HVAC	Syste	m Components and Equipment			EF-4	Exhaust Fan	3,Reynolds,Tim,CB Engineers	16-Apr-2008	14:16	Componen
			44	43	1,100	54, HVAC	Syste	m Components and Equipment			EF-5	Exhaust Fan	3,Reynolds,Tim,CB Engineers	16-Apr-2008	14:16	Componen
			45	44	1,100	54, HVAC	Syste	m Components and Equipment			EF-6	Exhaust Fan	3,Reynolds,Tim,CB Engineers	16-Apr-2008	14:16	Componen
			46	45 3	3,101	54, HVAC	Syste	m Components and Equipment			EF-7	Exhaust Fan	3,Reynolds,Tim,CB Engineers	16-Apr-2008	14:16	Componen
			47	46 9	3.0	54 HVAC	Syste	m Components and Equipment			EF-8	Exhaust Fan	3.Revnolds.Tim.CB Engineers	16-Apr-2008	14:16	Componen
			48	47 8	5,104	54 HVAC	Syste	n Components and Equipment			EF-9	Exhaust Fan	3,Reynolds,Tim,CB Engineers	16-Apr-2008	14:16	Componen
			49	48	1.100	54.HVAC	Syste	m Components and Equipment		+	AH-1	Air Handling Unit	3.Revnolds.Tim.CB Engineers	16-Apr-2008	14:16	Componen
			50	49	10.0	35 Plambi	ing Fix	tures.pumps. Backflow preventors. Vib	ration	absi	OWS-1	Oil Water Seprator	3.Revnolds.Tim.CB Engineers	16-Apr-2008	14:16	Componen
			51	50 3	3,101	35.Plumbi	ina Fix	tures.pumps. Backflow preventors. Vib	ration	absi	WH-1	Water Heater	3.Revnolds.Tim.CB Engineers	16-Apr-2008	14:16	Componen
			52	51	1,100	45 compre	essed	air system components		T	AC-1	Air Compressor	3 Reynolds Tim CB Engineers	16-Apr-2008	14:16	Componen
			53	52	100	35.Plumbi	ing Fix	tures pumps, Backflow preventors, Vib	ration	absi	EEW-1	Emergency Eye Wash	3 Revnolds Tim CB Engineers	16-Apr-2008	14:16	Componen
			54	53	1 100	94 Fuel O	il Svst	em and numns		T	P-1	Oil Supply Pumps	3 Revnolds Tim CB Engineers	16-Apr-2008	14:16	Componen
			55	54	1 100	94 Fuel O	il Syst	iem and numns		+	P-2	Oil Supply Pumps	3 Revnolds Tim CB Engineers	16-Apr-2008	14.16	Componen
			56	55	1 100	94 Fuel O	il Syst	tem and pumps		+	P-3	Oil Supply Pumps	3 Revnolds Tim CB Engineers	16-Apr-2008	14:16	Componen
			57	56	1 100	35 Plumbi	ing Fix	tures numns. Backflow nreventors. Vib	ration	ahsi	DE-1	Drinking Fountain	3 Reynolds Tim CB Engineers	16- Apr-2008	14:16	Componen
			58	57 7	7 105	35 Plumbi	ing Fix	tures numps, Backflow preventors, Vib	ration	aher	SH.1	Shower	3 Reynolds Tim CB Engineers	16-Apr-2009	14:16	Componen
						es numps, Backflow preventors, Vib	ration	ahei	55.1	Service Sink	3 Reynolds Tim CB Engineers	16-Apr-2009	14:16	Componen		
~~~~~	~~~~	~~~~	~~~~	~~~~				es numes Backflow preventors, Vib	ration	ahei	S.1	Sink	3 Reynolds Tim CB Engineers	10-Apr-2000	14:16	Componen
								es numps, Backflow preventors, Vib	ration	aher	1.1	Lavatory	3 Reynolds Tim CB Engineers	16 Apr 2009	14:16	Componen
								es numps, Backflow preventors, Vib	ration	ahe	1-1	Lavatory	3 Reynolds Tim CB Engineers	16-Apr-2000	14:16	Componen
DESIGN	QTY	CFM	S.P.	WATTS / HP	VOLTAGE	WEIGHT		es numps, Backflow preventors, Vib	ration	ahs	WC-1	Water Closet	3 Reynolds Tim CB Engineers	16-Apr-2009	14:16	Componen
MODEL			0.405	7	000 /2 /002	105		ters and grilles	- anon	T	SD-1	Supply Diffuser	3 Reynolds Tim CB Engineers	16-Apr-2008	14:16	Componen
58-2L30-7	1	8000	0.125	3/4 HP	208/3/60*	125	2,3,5	tere and grilles		+	SD.1	Supply Diffuser	3 Reynolds Tim CB Engineers	16-Apr-2009	14:16	Componen
SB-2L30-7	1	8000	0.125	3/4 HP	208/3/60*	125	2,3,5	ters and grilles		+	R-1	Return	3 Reynolds Tim CB Engineers	16-Apr-2009	14:16	Componen
CSP-A510	1	350	0.25	217 W	115/1/60	36	5			+	l <del>ç i</del>		2 D LL T. OD C	10-Apr-2000	44.40	~
			0.20		110/1/00		l'	02-Facility / 03-Floor / 04-Space /	05-Sy	stem	/ 06-Registe	n07-Component / <u>08-Attr</u>	ibute 🔏 09-Coordinate 🔏 10-Schedu	<	11	>
CSP-A710	1	250	0.625	325 W	115/1/60	36	2								NUM	
N16	1	500	3.75	1/2 HP	115/1/60	XX	1	—								
			0.70	.74.197			Ľ									
N16	1	500	3.75	1/2 HP	115/1/60	XX	1									
CSP-A710	1	210	0.625	325 W	115/1/60	36										
SP-2130-7	1	8000	0.125	3/4 HD	208/3/60*	125	236	Ean Sa	h -	•	حاديلا					
30-2030-7	1	0000	0.125	3/4 MP	200/3/00*	125	2,0,0	Fan Sc	ne	90	Jule					
SP-B150	1	150	0.125	129 W	115/1/60	10	3,6									





# **Implementation Plan**

Northwest Construction Consumer Council

Slide 48

- Needs assessment: What types of information does FS need and in what format?
- Analyze current processes for data capture (capital projects), data exchange and data processes (facilities services)
- Design and test COBie processes for data capture (capital projects), data exchange and data processes (facilities services)



# **Integrating BIM and COBie**

#### "Keep the model alive"

- Training
- Maintenance scheduling and checklists
- Product Data
- Design for Maintenance
- Integration
  with Facilities
  Mgmt. software





Slide 50

ype a